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Abstract 

Acoustic propagation in the ocean inevitably encounters inhomogeneities of various 
types, which give rise to scattering. Acoustic scattering from rough water/bottom 
interfaces comprised of exposed rocks and sea mountains gives way to volumetric 
scattering in areas with flat interfaces and thick sediment cover. The data analysis 
of the ARSRP backscattering experiment revealed that random inhomogeneities in 
two irregular layers beneath the seafloor were the primary contributors to oblique 
backscattering in a sediment pond on the western flank of the Mid-Atlantic Ridge. In 
this thesis, an attempt has been made to model monostatic backscattering from 3-D 
volume inhomogeneities in the sediment and to compare the results with the ARSRP 
backscattering data. 

A scattering process cannot be modeled correctly without a proper account of the 
incident field. Several approximate propagation models have been evaluated against 
the exact solution, while the appropriateness of using the equivalent surface scatter- 
ing strength in volume scattering characterizations is studied. This study concludes 
that precautions need to be taken in modeling both the propagation effects and the 
scattering mechanisms associated with the bottom volume scattering process. 

A volume scattering model based on perturbation theory and the Born approxi- 
mation is developed incorporating contributions from both sound speed and density 
fluctuations. With the propagation part handled accurately by OASES and random 
fluctuations generated effectively by a new scheme modified from the spectral method, 
the model is capable of simulating the monostatic backscattered field and time series 
due to 3-D volumetric sediment inhomogeneities. Both the characteristic length scale 
and power spectrum descriptions of the random inhomogeneities are shown to have 
great impact on the backscattered field by parameter studies in a free-space scenario. 
The important roles played by horizontal anisotropy and the vertical correlation of 
the random field have been demonstrated. Density fluctuations are further confirmed 
to be the dominant force in backscattering. The model matches the ARSRP backscat- 
tering data very well, with the fluctuations of sound speed and density in the two 
irregular layers described by a power law type of power spectrum. 
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Chapter 1 

Introduction 

1.1    General Background 

Acoustic propagation in the ocean will inevitably encounter various types of inho- 

mogeneities. Rough sea surfaces and seafloors, air bubbles, schools of fish, internal 

waves, and variations of sediment properties constitute only a small part of a wide 

spectrum. All of these inhomogeneities have the capability of reradiating a certain 

amount of incident acoustic energy, the process of which is called scattering. 

With abilities to affect the distribution of the acoustic energy, scattering will un- 

doubtedly play a significant role in sonar operation, which remains a primary means 

to explore the ocean. Analogous to optical scattering, which makes the world vivid to 

us, acoustic scattering enables us to "see" the underwater world. Broad applications 

include target detection and localization, geological surveys of the ocean seafloor, and 

monitoring of environmental changes, to name a few. On the other hand, contrary to 

its above role as signal, the reverberation can act as background noise to operations 

such as acoustic navigation and communication. Especially since it is induced by 

the transmitted signal itself, it would be extremely difficult to achieve a successful 

elimination without the knowledge of the excitation mechanisms. Needless to say, 

understanding scattering mechanisms is essential to sonar operations regardless of 

the role scattering is playing. 
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Usually, acoustic scattering is categorized into rough surface scattering and vol- 

ume scattering. For many years, scattering from rough surfaces has been the center of 

attention. Rough sea surfaces, exposed rocks on the seafloor, and large topographical 

features such as sea mountains and ridges are considered the dominant contributors to 

bottom scattering. On the other hand, bottom volume scattering has attracted more 

and more interest in recent years. Although less obvious and less well understood, 

more evidence shows that the inhomogeneities within the sediment can be a dominant 

factor in total bottom scattering, especially when the seafloor is relatively flat and/or 

the the bottom attenuation is small. In his early work on the measurement of the 

bottom backscattering strength, Merklinger [2] speculated that subbottom inhomo- 

geneities may be primary contributors to the backscattered field. Jackson et al. [3, 4] 

and Lyons et al. [5] also recognized the importance of volumetric inhomogeneities 

in the bottom scattering. Tang et a/.'s [6] analysis of high-frequency scattering data 

showed that the gas voids in the sediment are probable significant scatterers. 

In order to understand a physical process such as scattering, we will have to re- 

sort to both experiment and modeling. Due to various reasons, sediment volume 

scattering is difficult to study. First of all, it is extremely difficult to directly mea- 

sure the properties of the sediment. As a result, a lot of modeling work is based on 

very limited knowledge of the ground truth. Second, it is no easy task designing a 

good scattering experiment as well. In the usual deep-water scattering experiments, 

the source and receivers are close to the sea surface. Consequently, the insonified 

region is so large that the strong returns from sea mountains are likely to mask the 

weak returns from the sediment volume. In shallow water, the waveguide effects will 

inevitably complicate the scattered field, making it arduous to pinpoint the volume 

scattering effect [7, 8]. Third, the conventional single source/single receiver configu- 

ration is unable to distinguish the volumetric scattered returns in different directions, 

which may result in misinterpretation of the data. To avoid all of the above problems, 

an ideal experimental scenario would be to have a deep-towed acoustic source and 
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receiving array collecting data over a deep-sea sediment pond area, where the acous- 

tic propagation is relatively simple in the absence of the waveguide effects manifested 

in shallow water and the scattered returns are primarily from the volume inhomo- 

geneities in the sediment because the deep-sea water/sediment interfaces are normally 

flat. Fortunately for us, the experiment to be described next fit this scenario very well. 

1.2    Data Analysis Results of ARSRP Backscatter- 

ing Experiment 

As part of the Office of Naval Research Bottom/Subbottom Acoustic Reverberation 

Special Research Program (ARSRP), a backscattering experiment was conducted over 

a sediment pond on the western flank of the Mid-Atlantic Ridge in July 1993. A chirp 

source and vertical line array were deep-towed 200 m to 400 m above the seafloor, 

while the sediment thickness was up to 400 m in the middle of the sediment pond. 

For a transmitted acoustic source level of approximately 200 dB re 1/iPa @ lm and 

a source frequency of 250-650 Hz, the acoustic signal can penetrate to the rock base- 

ment beneath the sediment layer in spite of sediment attenuation and geometrical 

spreading. Details of the experiment description are presented in Chapter 6. The 

following are the data processing results from Ref. [9, 10]. 

Taking advantage of the vertical line array, endfire beamforming yields signals 

which are dominated by normal incidence returns. With the ship moving across the 

sediment pond area, sediment profiling can be obtained by aligning the normal in- 

cidence returns with respect to reflection arrivals at the water/sediment interface. 

After employing an edge detection algorithm [11], the inferred sediment structure is 

shown in Fig. 1-1 at the east side of the sediment pond. Evidently, layering with 

gentle horizontal changes is the main characteristic of the sediment. However, some 

random features can be seen in two irregular layers beneath the water/sediment in- 
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Figure 1-1: The inferred sediment structure at the east side of the sediment pond. 
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terface, from 0.02s to 0.045s and from 0.065s to 0.11s. A geological interpretation 

suggests that they are most likely to be turbidity layers [12]. What interests us is to 

find out whether the inhomogeneities contribute to backscattering in oblique direc- 

tions. After subtracting the returns in normal and near normal incidence directions, 

the backscattered returns at oblique grazing angles can then be isolated by multi- 

ple constraints beamforming. We average the envelope of the beamformed results 

over 8 consecutive pings and further smooth the curve by a low-pass filter in order 

to detect any potential trend. The averaged envelope is shown in Fig. 1-2. Three 

groups of peaks appear in each look direction. Assuming that these peaks occur at 

horizontal interfaces and using a nominal sound speed of 1530m/s, we have the best 

fit indicated by the solid lines. Here time 0 corresponds to the arrival time of the 

first water/sediment interface reflection. From the travel times, we find that the first 

two imaginary interfaces would reside at the locations of the above-mentioned two 

irregular layers, where actual interfaces don't appear to exist. We gather that the ob- 

served strong backscattering is probably caused by volumetric inhomogeneities. The 

third group is associated with sediment/basement interface according to travel time. 

Therefore, we tentatively conclude that the backscattered field in oblique directions 

is due to sediment inhomogeneities in the two irregular layers. 

The same procedure is executed for pings collected at the west side of the sed- 

iment pond. Figure 1-3 shows the sediment structure. Interestingly, the upper ir- 

regular layer is absent on this side of the sediment pond. Therefore, if the above 

hypothesis that inhomogeneities in the irregular layers are the main contributors to 

the oblique backscattering is true, one would see only one group of peaks correspond- 

ing to the lower irregular layer instead of two groups of peaks at the beginning of 

the beamformed output record. Figure 1-4 shows the average envelope of oblique 

angle beamforming results. The striking point here is that the first group of peaks 

does disappear, which confirms our finding that the irregular layers beneath the wa- 

ter/sediment interface are the dominant contributors to backscattering in oblique 

directions. Notice that there is not a group of peaks close to time 0.02s at 60 degree 
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Figure 1-2: The average envelope of oblique angle beamforming results over 8 pings 
at the east side of the sediment pond (arbitrary units). 
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Figure 1-3: The inferred sediment structure at the west side of the sediment pond. 
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Figure 1-4: The average envelope of oblique angle beamforming results over 8 pings 
at the west side of the sediment pond (arbitrary units). 
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grazing angle in both Fig. 1-2 and Fig. 1-4, which suggests the insignificance of 

backscattering at the water/sediment interface. This has been independently con- 

firmed by Jeffrey and Ogden [13]. 

1.3    Objective and Approach 

The results of experimental data analysis are encouraging. Now it is up to the model- 

ing to help achieve better understanding of the scattering mechanisms. As a matter of 

fact, the objective of this thesis is to develop a monostatic backscattering model that 

can incorporate 3-D bottom volumetric inhomogeneities and to compare the results 

with the ARSRP backscattering data. 

Since the propagation of sound between the source/receiver and the scatterer 

should be treated as an integral part of the scattering modeling, as the first step, 

efforts will be made to evaluate propagation approximations incorporated in Hines' 

[14], Ivakin's [15] and Mourad and Jackson's [1] scattering models. Comparisons 

with the full-wave solution obtained by a wavenumber integration method [16] are 

expected to show the validity and limitations of those approaches. The effectiveness 

of the equivalent surface scattering strength in characterizing the volume scattering 

process is going to be examined as well. 

Due to the fact that the equivalent surface scattering strength is inappropriate in 

describing the angular dependence of the volume scattering when multi-path effects 

cannot be ignored, we want the model to possess an ability to overcome this. The 

most direct way to conduct a model/data comparison of bottom volume scattering 

is to compare them in the time domain. Scattering from volume inhomogeneities is 

usually considered as a random process, it is therefore practically impossible to syn- 

thesize time series which can match a single trace of the scattered field. Instead, one 

would try to compare the average shape, or frequency components, of the synthesized 
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time series with that of the experimental data. A forward model that can incorpo- 

rate random inhomogeneities and generate reverberation time series would definitely 

improve our capability of simulating scattering experiments. 

In the model, the calculation of the incident field will be handled by a numerical 

wavenumber integration technique using OASES [16]. This would provide the model 

with versatility to deal with scattering involving complicated propagation scenario 

such as a sound speed gradient and even waveguide effects in shallow water. Similar 

to Morse and Ingard's [17] and Tang's [8] approach, a perturbation method will be 

applied to determine the scattered part of the field.   Here, sound speed and den- 

sity fluctuations in the fluid sediment are considered the cause of scattering. Rough 

surface scattering will not be included here but can be added in a straightforward 

manner. While the necessity to include poro-elastic effects in a sediment scattering 

model remains an open question [18], a fluid model is appropriate for the soft sed- 

iments and low frequencies under consideration.  The volume inhomogeneities, i.e., 

the sound speed and density variations, are generated by the spectral method [19]. 

The random field is assumed to be correlated in three dimensions and defined by a 

power spectrum.  By taking advantage of the fact that the source and receiver are 

both omnidirectional and co-located in monostatic backscattering experiment scenar- 

ios, the usually computationally intensive procedure can be carried out effectively. 

The model is expected to interpret the phenomena which have been observed in the 

ARSRP site A sediment scattering experiment [9, 10]. 

1.4    Literature Review 

The modeling of scattering from both rough interfaces and volume inhomogeneities 

has been an active research area for many years, and the related literature is vast. 

We will present a brief overview of it. 
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A large amount of work has been reported studying acoustic scattering from rough 

surfaces. There are two well-known theoretical methods for calculating acoustic scat- 

tering from rough surfaces: the Rayleigh-Rice method and the Kirchhoff method. 

Based on the small perturbation approximation, the Rayleigh-Rice method treats 

the rough surface as a perturbation to a smooth plane and the resulting scattering 

coefficient due to the presence of roughness is calculated. The Kirchhoff approxima- 

tion approach is more pertinent to large-scale roughness, and the scattering surface 

is assumed to be sufficiently smooth so that the tangent plane at any point of the 

surface determines the reflection properties. Some efforts are also put into combining 

the above two methods in a composite model, treating small-scale roughness by the 

Rayleigh-Rice method and large-scale roughness by the Kirchhoff method [3]. A good 

review of theoretical work and experimental investigations on rough surface scattering 

can be found in Ogilvy's book [20]. 

It is generally accepted that backscattering from sediment volume inhomogeneities 

can contribute significantly to seafloor backscattering, especially at low frequencies, 

small grazing angles and where the bottom is flat. Prom the 1960's, a number of mod- 

els have been developed in order to examine the underlying scattering mechanisms 

and to predict the strength of the backscattered signals. 

Stockhausen [21] derived a volumetric backscattering strength expression assum- 

ing that the water-sediment interface is flat and refracting (with the consequent crit- 

ical angle effect), and with the homogeneous sediment containing a uniform set of 

solid spherical particles which act to scatter the acoustic energy. Treating the small 

spheres as uncorrelated point scatterers, he employed Morse's expression [22] which 

is valid for scattering from spheres much smaller than a wavelength. In his model, 

Stockhausen represented all the scattering processes by a single volume backscatter- 

ing cross section without further exploring any physical mechanisms. 

Nolle et al.  [23] at almost the same time developed their own model. They de- 
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scribed the scattering from the sediment volume based on a random distribution of 

scattering amplitude per unit volume. The scattering strength distribution was con- 

sidered to be centered at a mean value with random deviations. For simplicity, the 

scattering autocorrelation function was assumed to have the form of an exponential 

decay. The autocorrelation length was proportional to the particle size in the sed- 

iment volume, thus going one step further compared to Stockhausen's uncorrelated 

point scatterer model. Nolle et al. also conducted an experiment in the laboratory 

studying acoustic scattering from a smooth sand surface and compared their model 

with the collected data. It showed that the model had some difficulties in explaining 

the scattering from sub-critical angles. 

Crowther [24] included both interface roughness and volume inhomogeneity effects 

in his ocean bottom backscattering model. Kuo's formula [25] for backscattering from 

the rough interface between two homogeneous fluids was used here. Extending Nolle 

et a/.'s model, he assumed the correlation function for impedance fluctuations to be 

elliptic exponential, which was able to account for the anisotropy of the scatterers. 

However, this model also had problems with scattering at sub-critical angles when 

comparison with Nolle et a/.'s laboratory backscattering data was made. Without 

knowledge of the detailed shape of the correlation function, it would be inappropriate 

to predict such characteristics as the frequency dependence of the scattering employ- 

ing this model. 

Morse and Ingard [17], studied volume scattering due to compressibility and den- 

sity fluctuations in a free-space scenario. Their approach is still one of the best 

available methods in modeling volume scattering. 

There were some singular features of the backscattering coefficient obtained in 

experimental measurements at sea [26] [27]. These included the frequency indepen- 

dence (or weak frequency dependence) over the frequency range 1-100 KHz and an 

angular dependence proportional to sinO for grazing angles 9 from 5 to 50 degrees. 
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In order to interpret this, Ivakin and Lysanov [28] proposed their statistical mod- 

els on the basis of the geoacoustical model presented earlier by Lysanov [29]. The 

scattering was thought to come from "sharply anisotropic random inhomogeneities 

(fluctuations of the refractive index): large-scale in the horizontal plane and small- 

scale in depth" in the sediment. They used the Born approximation to derive an 

expression for the equivalent surface scattering coefficient, which was not dependent 

on the frequency if the absorption coefficient was proportional to frequency and the 

power spectrum of the inhomogeneities was inverse proportional to the wavenumber 

to the third order. Also, they extended the single-scale (horizontal correlation coeffi- 

cient) model to two-scale and multi-scale models so as to account for the variability 

of the horizontal correlation coefficient in different regions. The interface effect was 

ignored by assuming that the changes in sound speed and density from the water to 

the water-saturated sediment were very small. The model prediction agreed very well 

with the data after the model/data fit of a free parameter: the ratio of the vertical 

and horizontal correlation lengths. 

In their next paper [30], Ivakin and Lysanov revised their model to account for 

the interface roughness effect. The Kirchhoff approximation was applied to the rough 

interface backscattering case. The model studied in detail the influence of interface 

roughness on the volume backscattering cross section: for slow or nonreflecting bot- 

toms, the volume scattering did not depend on whether the bottom interface was 

smooth or not; for fast bottoms, the roughness effect was significant in the sub- 

critical grazing angle region. Physically, the reason for the latter result was because 

the rough interface would enhance the penetration of sound into the bottom medium 

at small grazing angles and therefore intensify the scattering of sound by volume in- 

homogeneities. They emphasized the nonadditiveness of the scattering effects due to 

volume inhomogeneities and water-bottom interface roughness, which was different 

from several other researchers who assumed that these two effects were uncorrelated. 

The authors did not include the possible lateral wave effects. 
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Ivakin [15] extended his model for scattering from volume inhomogeneities again 

to deal with a stratified bottom. The correlation function for the random spatial 

fluctuations of the acoustical parameters was considered to be "statistically homo- 

geneous in the horizontal plane and quasi-homogeneous with respect to the vertical 

coordinate". The model allowed considerable changes in the sound speed and the 

density with depth. He studied the linear increase in sound speed and density case 

and the linear decrease in sound speed case. The results showed good model/data 

agreement. 

For the high-frequency (10-100 kHz) bottom backscattering model proposed by 

Jackson et al. [3] in 1986, the composite roughness approximation was applied for the 

scattering due to interface roughness. To include the volume scattering contribution, 

they employed Stockhausen's formula [21] and accounted for the volume scattering by 

an equivalent surface backscattering coefficient. The assumption inherent in Jackson 

et aVs approach was the neglect of any correlation between the scattering due to in- 

terface roughness and sediment inhomogeneities, which was different from Ivakin and 

Lysanov's model [30]. Multiple scattering was also ignored. The comparison of the 

model with two sets of data suggested that "in soft sediment, sediment volume scat- 

tering is likely to be more important than roughness scattering, except near normal 

incidence and for grazing angles smaller than the critical angle. For sand bottoms, 

roughness scattering is relatively more important". However, the volume scattering 

parameter was still obtained from model/data fits without any relationship to the 

sediment properties. 

Mourad and Jackson [31] generalized Jackson et a/.'s model [3] by including the 

sediment sound absorption in the interface boundary condition. They constructed 

some empirical relationships for estimating surficial values of the input geoacous- 

tic parameters to the model using bulk measurements of logarithmic grain size Mz 

proposed by Hamilton [32]. These parameters otherwise could only be obtained by 

direct measurement, which was not available for many datasets. Nevertheless, as they 
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pointed out, the gradients of sound speed and density, which might play an impor- 

tant role in affecting the acoustical response of the sediment, were not included in 

this model. 

Later, Mourad and Jackson [1] went one step further by including the gradient 

of sound speed in their low-frequency (100-1000 Hz) model. The volume scattering 

model was very similar to Ivakin's model [15] and they assumed "a distribution of 

uncorrelated omnidirectional point scatterers in the sediment causes the backscatter- 

ing of sound". The model related the oscillation of the backscattering strength to 

the acoustic field within the sediment and suggested that the total backscattering 

from the ocean bottom was controlled by the processes affecting sediment volume 

scattering, for example strong layering. They also discussed the possible errors in 

the measurement of bottom scattering strength near the normal incidence direction 

using omnidirectional sources and receivers. For low-frequency backscattering, the 

questions for this model were how good the local plane-wave assumption inherent 

in the model was and the validity of attributing the volume scattering effect to an 

equivalent surface scattering process. 

Hines [14] developed a backscattering model in an approach similar to Ivakin's 

[15]. He followed Chernov's work [33] and applied the Born approximation and the 

far-field assumption. Backscattering of the acoustic energy in his model was due to 

the sound speed and density fluctuation in the sediment, which he related to the 

fluctuation of porosity. The lateral wave effect was for the first time included in this 

model, attempting to interpret the phenomena observed in experiments at small graz- 

ing angles. An exponential decay correlation function was assumed and the model fit 

several published data very well. Yet a priori knowledge of the correlation function 

and variance of the porosity were needed for the model prediction. The approach of 

decomposing the incident spherical wave into a refracting plane wave and an evanes- 

cent wave was debatable. Later, he extended the model to deal with bistatic scattering 

[34]. 
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Tang in his thesis [35] and Tang and Frisk in their several papers [36] [37] [38] 

discussed in detail the scattering from a random layer or half-space where the sound 

speed is assumed to be a constant plus a small random component. A self-consistent 

volume scattering model using a perturbation method was developed to model scat- 

tering from sound speed fluctuations. A coherent field reflection coefficient which 

included scattering loss could be calculated. An interesting point was that the spatial 

correlation length of the scattered field could be used to infer the correlation length 

of the scatterers. This provided a way of inverting for the bottom parameters critical 

to bottom scattering by measuring the scattered field using multiple receivers. Also 

taken into consideration was the anisotropy of the scatterers. Besides examining the 

combination of interface roughness and volume inhomogeneity effects, an attempt was 

made to solve the near-field problem in low-frequency scattering when the far-field 

assumption was not appropriate anymore. 

Lyons et al. [5] extended Jackson et a/.'s model [3] for scattering from the seafloor. 

In addition to the composite roughness model for interface scattering and Stock- 

hausen's expression for volume scattering [21], they included the volume scattering 

from a random inhomogeneous continuum and scattering from subbottom interfaces. 

Their approach to calculating the scattering from the random inhomogeneous con- 

tinuum was similar to Hines' work [14]. The compressibility and density variations 

were modeled. The correlation function could have different correlation lengths in 

the horizontal and in the vertical to allow for anisotropy in the volume scattering 

model. They employed the Born approximation to obtain the volume backscattering 

cross section, which was a free parameter in Jackson et aVs model, before fitting 

it to Stockhausen's formula for an effective surface backscattering coefficient. They 

estimated all of the input parameters except the horizontal correlation length from 

core data. The comparison with data was very good. Because this model was more 

complicated and had more input parameters, its performance depended very much 

on the estimation of those parameters. 
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Recently, Yamamoto [39] used the same approach as Chernov's [33] to model 

density and sound speed fluctuations in the sediment. The above fluctuations were 

described by a power law distribution and the parameters were estimated from cross- 

well tomography. The model compared with data favorably. However, the ray tracing 

type of propagation model would not be able to deal with scattering at low grazing 

angles for a fast bottom. 

The modeling of volume scattering in a shallow water waveguide can be found in 

the work by Ellis [40], Tang [8] and Tracey [7]. 

For elastic media, in addition to compressional waves, shear waves and evanescent 

waves (e.g., Schölte waves at a fluid-elastic interface) may play important roles in 

bottom scattering. Their interactions generate some unique scattering features that 

cannot be observed in a fluid-fluid environment [41] [42] [43] [44]. For discrete elastic 

targets in a layered waveguide, the resultant scattering is treated by the transition 

matrix formalism [45] [46] or the boundary element method (BEM) [47]. However, 

the elasticity effect will not be considered in this thesis work. 

On the experimental side, early investigations of bottom backscattering used an 

omnidirectional source and receiver. Mackenzie [48] presented the first deep-sea mea- 

surement results in 1961. The source and receiver were close to the sea surface. He 

found that the bottom backscattering strength obeyed Lambert's law of diffuse reflec- 

tion for grazing angles from 30 to 90 degrees, with the scattering constant (Mackenzie 

coefficient) having a value of-27dB. This value didn't change for the frequencies 530 

Hz and 1030 Hz. In 1968, Merklinger [2] reported his experiment using a hydrophone 

and explosive charges suspended near the ocean bottom. The data analysis indicated 

that the reverberation due to the subbottom layer structure contributed significantly 

to the total bottom reverberation. This highlighted the importance of subbottom 

inhomogeneities in the prediction of the bottom backscattered field. 
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Thanks to the evolution of technology, later experiments have used directional 

sources and/or receivers to obtain scattering data from the ocean bottom. Boehme 

et al. [49] conducted an experiment to study backscattering at low grazing angles 

in the frequency range 30-95 kHz, and found that the Lambert's law fit for grazing 

angles ranging from 2 to 10 degrees. Preston and Akal [50] employed a towed hor- 

izontal array and a suspended vertical array to measure ocean basin reverberation. 

They found that strong backscattering regions were related to basin topographic fea- 

tures. Hines and Barry [51] carried out an experiment in the Sohm Abyssal Plain 

with the source and receiver suspended close to the smooth seabed. Their acoustic 

array contained an omnidirectional hydrophone and a ring projector with vertical 

directivity. Different features were observed for backscattering from different bottom 

types. Jackson and Briggs [4] used a towed platform equipped with planar arrays 

to study high frequency bottom backscattering in three different regions. Sediment 

volume scattering was found dominant in two of the three sites. 

1.5    Contributions 

This thesis has advanced the state-of-the-art in several ways. These include: 

• Evaluation of sound propagation models used in bottom volume scattering stud- 

ies. The validity and limitations of some widely used models have been recog- 

nized and the equivalent surface scattering strength is found insufficient to char- 

acterize the mid- and low-frequency volume scattering process when multi-path 

effects are severe. 

• Implementation of a numerical monostatic backscattering model with the ability 

to incorporate 3-D volume inhomogeneities and to compare with experimental 

data effectively. Density fluctuations have been confirmed to be the main con- 

tributor to backscattering, while the anisotropy of the statistical distribution of 
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the inhomogeneities in both horizontal and vertical directions is found to have 

a profound influence on the angular dependence of the backscattering strength. 

In addition, the synthesized time series can help to design an experiment and 

provide predictions of reverberation fields. 

• Formulation of the spectral method for the generation of azimuthally integrated 

3-D random fields. This approach provides the opportunity to understand the 

full 3-D phenomena with a manageable computational load. 

• Comparisons with the ARSRP backscattering data. The good fit between the 

model and data has proved the versatility of the model. The power law type of 

power spectrum is found to be the best description of sound speed and density 

fluctuations in the sediment that gives rise to excellent model/data comparisons. 

1.6    Overview of the Thesis 

Chapter 2 begins by reviewing the definition of the scattering cross section and the 

propagation models by Hines, Ivakin and Mourad and Jackson. Comparisons with 

the exact solution obtained by OASES are then carried out for three different type 

of fluid bottom models. The pros and cons of each propagation model are discussed. 

Meanwhile, the validity of the equivalent surface scattering strength in characterizing 

volume scattering is also evaluated. 

In Chapter 3, the formulations for scattering due to sound speed and density fluc- 

tuations are derived. In addition, the power spectra and correlation functions that 

are going to be investigated later are presented. Analytic solutions for scattering 

in a free-space scenario are used to study the effects on backscattering imposed by 

different distributions and different correlation lengths of sound speed variations. 

Chapter 4 presents a scheme to generate 3-D azimuthally-summed random fields 

by the spectral method.  Numerical examples are also given for verification of this 
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approach. 

Chapter 5 describes the procedures for generating backscattered time series. Then 

the focus shifts to the verification of the numerical model. The effect of density fluc- 

tuations is studied at the end. 

In Chapter 6, we present a detailed description of the ARSRP backscattering ex- 

periment. A brief introduction of the data processing methodology is then given. 

The estimation of backscattering strength from data and the selection of model pa- 

rameters are then discussed. Data from the ARSRP experiment are compared to 

numerical simulations. 

Chapter 7 summarizes the physical insights gained from the modeling and sug- 

gests directions for future work. 
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Chapter 2 

Evaluation of Sound Propagation 

Models Used in Bottom Volume 

Scattering Studies 

The proper evaluation of sound propagation between sources/receivers and scatter- 

ers is important in characterizing bottom volume scattering. In this chapter, several 

sound propagation models used in bottom volume scattering studies are evaluated and 

their results compared to the exact solution obtained through a numerical wavenum- 

ber integration technique. It is found that Hines' approach [14] works well for the 

two isovelocity half-space case except when the grazing angle is close to the critical 

angle. The far-field approximation, given by Ivakin [15] and Mourad and Jackson [1], 

has a performance depending upon the sound speed structure in the sediment. For 

an isovelocity slow bottom, it agrees well with the exact solution. However, discrep- 

ancies arise for an isovelocity fast bottom or a bottom with a complex sound speed 

structure. In addition, the appropriateness of using the equivalent surface scattering 

strength as a function of grazing angle in volume scattering characterizations is stud- 

ied. In conclusion, precautions need to be taken in modeling both the propagation 

effects and the scattering mechanisms associated with the bottom volume scattering 

process. 
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This chapter is structured as follows: In the first section, we discuss the classi- 

cal scattering problem and the definition of the conventional scattering cross section. 

The concept of an equivalent surface scattering strength which incorporates bottom 

volume scattering is also reviewed; for the second section, we describe the propaga- 

tion models, and in the next section, we compare the results of these models for some 

typical cases of interest. 

2.1    Statement of the Problem 

Acoustic wave scattering from the ocean bottom generally includes rough water/- 

bottom interface scattering and subbottom volume scattering. While rough surface 

scattering has been the focus for many years, recent evidence shows that volume scat- 

tering, due to inhomogeneities and/or scattering layers within the sediment, could 

contribute significantly to bottom reverberation. 

The conventional quantities used to characterize the above two processes are the 

surface scattering coefficient and the volume scattering coefficient [52], which histori- 

cally are defined in the context of a plane wave being scattered by scatterers confined 

in an otherwise homogeneous medium. In ocean bottom scattering, however, the 

incident field is normally not a plane wave. The multipath and refractive effects 

resulting from bottom sound speed structure complicate the scattering process and 

make it extremely difficult to pinpoint the scattering element in the classical sense. 

This problem will not diminish when the bottom volume scattering process is treated 

by an equivalent surface scattering process with the parameter of equivalent surface 

scattering coefficient being used. Therefore, the credibility of the scattering strength 

estimated from experimental data by this means needs to be examined. 

Bottom volume scattering modeling usually include two components: the scatter- 

part, which encompasses the appropriate scattering mechanisms and the propa- ing part 
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gation part, which takes into account propagation from the source to the scatterer 

and from the scatterer to the receiver. We will concentrate on propagation mod- 

els in this study, which is equivalent to evaluating the Green's function between the 

source/receiver and the scatterer. The necessity to include poro-elastic effects in the 

scattering model remains an open question [18], and we will regard the bottom as an 

acoustic fluid. The free-space Green's function, together with the transmission coeffi- 

cient at the water/bottom interface has been used in some work [24, 53]. Despite its 

simplicity, it cannot incorporate the interface wave contribution at subcritical grazing 

angle for a fast bottom. Since we are interested only in the methods that are good 

for the entire angular regime, this method will not be discussed in this paper. Ivakin 

[15] and Mourad and Jackson [1] considered the incident wave on the interface to be 

a plane wave, with the incident direction varying over the insonified region to match 

the true incident direction. For convenience, we call it the far-field approximation 

in this paper. This approach is actually a simplified version of the stationary phase 

method with only the most dominant stationary point contribution being included. 

Meanwhile, Hines [14] followed the stationary phase approach of Westwood [54] to 

find the transmitted field due to a point source in the two isovelocity half-space case. 

The goal of this chapter is to demonstrate the validity and limitations of the 

above-mentioned propagation models based on realistic geoacoustic parameters. Re- 

sults from these models are compared with the exact solution obtained through a 

numerical wavenumber integration technique. Their influence on the estimation of 

the equivalent surface scattering strength is also studied in this chapter. 

2.2    The Scattering Cross Section 

The conventional scattering cross section is defined when describing the scattering 

phenomenon associated with a single scatterer (e.g., a particle), as shown in Fig. 2-1. 

For simplicity, the incident plane wave is assumed to be propagating in the positive 

39 



incident wave 

Figure 2-1: Geometry of the classical scattering problem. 

z direction with unit amplitude and suppressed time dependence e~iwt: 

„ikz 1>i = elKz. (2.1) 

The time dependence is chosen in the same convention as that in Ivakin's and Hines' 

work. However, bear in mind that I will change it to eiu3t starting from Chapter 3 in 

order to be consistent with the convention used in statistic theory and random field 

generation. The scattered wave behaves as a spherical wave in the far field and is 

measured at infinity: 

^s = f{0A) ,   for r-»oo, (2.2) 

where r, 6 and <j> are spherical coordinates with the origin at the scatterer. The 

scattering cross section is then defined as [55] 

"(M = I/(M)|2. (2.3) 

It is a measure of the scattered power in the (0,4>) direction per unit solid angle, per 

unit incident intensity.  Because the incident field is a plane wave and the observa- 
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Figure 2-2:  Schematic illustration of the surface and volume scattering coefficient 
definitions. 

tion point is at infinity, a is a characterization of the scatterer independent of the 

source/receiver geometry [37]. 

As stated before, in bottom scattering studies, scattering by the rough water/- 

bottom interface and volume inhomogeneities within the bottom are two key pro- 

cesses. Any type of scattering modeling will inevitably encounter the problem of 

describing the scattering ability of a surface area and/or a volume. Figure 2-2 shows 

the concept underlying the definitions of a surface scattering coefficient as and a vol- 

ume scattering coefficient crv, which is similar to a. Plane wave incidence is again 

assumed here, with the source and receiver in the far field. The incident intensity J0 is 

measured at unit distance away from the scatterer. The scattered wave intensity Is is 

obtained at the receiver and then multiplied by r2 in oder to compensate for spherical 

spreading of the scattered wave. Similar to the definition of a, the scattering ability 

is characterized by the ratio of the scattered wave intensity to the incident intensity 

at unit distance from the scatterer per unit area or volume. It can be expressed in 
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the following formula [52]: 

as = Is(0,<P)r2/[Io(9o,<f>o)dS], (2.4) 

and 

av = 1,(9, <i>)r2/{Io(9o, <f>o)dV], (2.5) 

where (90, <j)0) is the incident direction, (9, <j>) is the scattering direction, and dS and 

dV are the insonified area and volume, respectively. 

Several things need to be noticed about the introduction of as and av. First, 

instead of a single scatterer, there exists a distribution of scatterers in the area S or 

volume V. Therefore, as and av represent a measurement of the average scattering 

ability of the insonified surface or volume. Second, in the definition of a, a plane wave 

incident on the scatterer is assumed in order to exclude the effect of source position. 

Similarly for as and av, the incident wavefront is considered planar or locally planar, 

with the source in the far field. However, due to the possible multipath and refractive 

effects, this is generally not true for bottom scattering problem. Third, for the same 

reasons, the scattered wave is not simply a spherical wave. As a result, the spreading 

loss at a distance r cannot be compensated for by the factor r2, and in general, the 

phase is incorrectly calculated as well. 

Despite the increasing interest in bottom volume scattering, it remains a diffi- 

cult issue to characterize the scattering process. Unlike the rough surface scatterers 

which are concentrated at the water/bottom interface, the scatterers associated with 

volumetric scattering may be distributed over a large region. Scatterers may be lo- 

cated immediately beneath the water/bottom interface or a certain distance below 

the seafloor. As illustrated in Fig. 2-5, if we have a fast bottom and the scatterer is 

not at the interface but with ß smaller than critical grazing angle, the scattered wave 

can reach the receiver through two paths, therefore at two different angles. The path 

lengths are different so that the arrival times are not the same. As will be discussed 
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Figure 2-3: Schematic illustration of the equivalent surface scattering coefficient def- 
inition. 

later, the above multi-path effect will pose nontrivial problems for scattering strength 

estimations. 

When the bottom attenuation is sufficiently high and the depth of acoustic pen- 

etration is much smaller than the distance between the source and the sediment, 

scattering from volume inhomogeneities within the bottom can be described by an 

equivalent surface scattering process [1]. As shown in Fig. 2-3, scattering from the 

shaded region, which is a slice of the scattering volume in an axisymmetric coordi- 

nate system, is attributed to scattering from the surface area above it. All of the 

scattering are considered all from the grazing angle 6 because the difference would be 

minimal when the observation point (i.e., receiver) is very far away. The equivalent 

surface scattering coefficient aes, instead of the volume scattering coefficient av, is 

then defined to quantify the scattering process. Mourad and Jackson [1] present a 

thorough description of this approach, with the result 

oP j<Jv\*i\Adz, (2.6) 
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where 

tf i = *„/#,. (2.7) 

Here z is the depth coordinate, *„ and *s are the incident field as it would be mea- 

sured at the volume element dV and the area element dA, respectively. aes can be 

viewed as a measure of the scattering contribution from the whole shaded region. Vl 

is the normalized field as if the scatterers were at the surface. 

The concept of an equivalent surface scattering coefficient has been used exten- 

sively in scattering data analysis. In the high-frequency, high-attenuation case, the 

incident wave may penetrate to relatively shallow depths. However, at low frequen- 

cies and attenuations, the ensonification can encompass a substantial portion of the 

sediment column. The sediment layering and the sound speed gradient cause the 

scatterers to be ensonified by an incident field consisting of refracted, multiple re- 

flected paths. Even if we neglect the multiple scattering effect, which is to ignore the 

rescattering of the scattered wave, it is still very difficult to relate the scattered re- 

turns recorded in an experimental time series to the corresponding scatterers. As can 

be seen in Fig. 2-3, the thickness of the shaded region would be very large for deep 

penetration. In the above calculation of the equivalent surface scattering strength, 

all the contributions from each shaded "vertical bar" would be ascribed to only one 

scattering angle, which can be justified for shallow penetration in a high-frequency 

situation but is invalid in the low-frequency case. In fact, the volume element could 

affect the scattering at different angles due to multipath effects. As a result, the 

angular dependence of the predicted scattering strength might be error-prone. In 

a shallow water environment, the limited water depth would further deteriorate the 

problem, since the distance between the source/receiver and the water/bottom inter- 

face is confined. All of the above would directly affect the effectiveness of using the 

scattering strength as a criteria in a model/data comparison. 
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2.3    Bottom Propagation Models 

Propagation, i.e., the Green's function, plays an important role in the modeling of 

the scattering process. In this section, three methods will be described for calculating 

the propagation from a point source in the water column to a scatterer in the sedi- 

ment. The propagation from the scatterer to a receiver in the water can be obtained 

accordingly by the principle of reciprocity. 

The wave equation in an inhomogeneous medium [56] can be written as 

,(r)V.(^VKr,())-^^M=/M, (2.8) 

where p(r, t) represents the pressure, p(r) represents the density, c(r) represents the 

sound speed, and /(r, t) represents the source term as a function of space r and time 

t. If constant density and harmonic time dependence [exp(—iuit)] are assumed, Eq.2.8 

becomes the Helmholtz equation 

[V2 + fc0
2(r)(l + e(r))] P(r, u) = F(r, co), (2.9) 

where k0(r) is the medium wavenumber for the background sound speed Co(r) and 

frequency UJ, with 

k(r) = -^-, (2.10) 
Co(r) 

and 

f(T,t) = F(v,u)e-i»t, 

p(r,t) = P(r,u)e-i»t. 

Parameter e(r) is the perturbation to the wavenumber due to the inhomogeneous 

sound speed. Using a perturbation method, the total field P(r) (for simplicity, CJ will 

be implicit from now on) can be expressed as the summation of the incident field 
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P0(r) and the scattered field Ps(r): 

P(r) = P0(r) + Ps(r), (2.11) 

where the incident field satisfies 

[V2 + fc0
2(r)]Po(r) = F(r). (2.12) 

We assume a point source at r = rs and the Green's function can be obtained from 

[V2 + A;0
2(r)]C?(r,rs)=5(r-rs), (2.13) 

and the boundary conditions. The scattered field Ps satisfies 

[V2 + *2(r)] Ps(r) = -A;0
2(r)e(r)P(r). (2.14) 

The integral equation for the solution of the scattered field is 

P.(r) = -A;2(r) ] G(r, r')e(r')P(r')rfr'. (2.15) 

From Eq.2.15, it can be seen that the scattered field and the Green's function are 

closely related. The Green's function, which characterizes the propagation from the 

source to the scatterer and from the scatterer to the receiver, plays an important role 

in modeling of the bottom scattering process. In this section, three methods will be 

described for calculating the propagation from a point source in the water column to 

a scatterer in the sediment. The propagation from the scatterer to a receiver in the 

water can be obtained accordingly by the principle of reciprocity. 

There are several ways to solve Eq.2.13. For simplicity, we will consider a range- 

independent, horizontally stratified environment, which If we choose a cylindrical 

coordinate system, with the vertical z-axis passing through the source and the r-axis 

being parallel to the interfaces, it becomes an axisymmetric propagation problem. At 
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Figure 2-4: The experimental scenario. 

this point, we will assume unit source strength. The Green's function can then be 

calculated by means of wavenumber integration. For the scenario shown in Fig. 2-4, 

we have the Green's function in the sediment G(r, z) as follows, 

/•oo 

G(r,z)   =    /   g(kr,z)krJ0(krr)dkr 
Jo 

=   ö /    9{kr,z)krH^\krr)dkr 
Z J—oo 

(2.16) 

where kr is the horizontal wavenumber, J0 is the zeroth order Bessel function, H}0) is 

the zeroth order Hankel function of the first kind and g(kr, z) satisfies the equation 

d?_ 
dz2 + (k2(z) - kl) g{kr,z) = 0 (2.17) 

and the boundary conditions of continuity of normal particle velocity and pressure 

across each interface. When krr » 1, we have 

I roo i  
G(r, z) = -== /    g(kr, z)Jkre*k*r-Vdkr 

v27rr J-oo v (2.18) 

Eq.2.18 can be evaluated numerically. The procedure of implementation can be 
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found in Schmidt's SAFARI manual [16] and Ref.[57]. In fact, the numerical solution 

of the wave equation in Section III is obtained primarily by using SAFARI. One of 

the advantages of SAFARI is that it generally provides stable results for complicated 

sediment structures. 

A point source is located at (0, zs). If an isovelocity water column is assumed so 

that the water wavenumber k0 = OJ/CQ, the depth-dependent Green's function in the 

water column will be 

where kZo = yjkl - k$ is the vertical wavenumber in the water. By matching the 

boundary conditions at the water/sediment interface z = 0, it is clear that the 

depth-dependent Green's function in the sediment can be expressed in terms of 

-elkzo\z*\/4irikzo. In other words, we have 

g(kr,z) = -g1(kr,z)^j-, (2.20) 

where gi(kr, z) can be viewed as the solution to Eq.2.17 with a plane wave incident 

on the water/sediment interface.  Using the coordinates shown in Fig.  2-4, Eq.2.18 

now becomes 
rM     \       ei*     f°° 9i(kr,z)^ei^r-^o^) 

The stationary phase method is often used to evaluate an integral of this type. 

Following Ivakin's approach [15], one obtains 

JikoR 
G(r,z) = -^^9i(kr,z), (2.22) 

where R is the distance between the source and the point at the interface right above 

the scatterer in the sediment, as shown in Fig. 2-5. For simplicity, a two half-space 

scenario is being considered. In the above approach, the propagation can be inter- 

preted as a spherical wave traveling from the source to the interface point B above 
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Figure 2-5: Schematic of scattering geometry for a two isovelocity half-space case. 

the scatterer and then a plane wave traveling from point B to the scatterer. For a 

slow bottom, there is only one eigenray path. Therefore, Path OBS is used to approx- 

imate Path OA 'S. Point B is the approximate stationary point and A' is the exact 

one; For a fast bottom, there are two cases. When the incident grazing angle a is 

larger than the critical angle, the situation is similar to that for a slow bottom. Only 

one eigenray path exists and A is the exact stationary point. However, when a is 

smaller than the critical angle, both Path OAS and OBS will exist. Paths OAS and 

OBS correspond to the refracted wave and the the evanescent wave, respectively. If 

ex is close to the critical angle, there might be more than two eigenrays according to 

Westwood [54]. On the one hand, point B is not the same as point A or A', which will 

bring in a certain degree of error for a larger than the critical angle. On the other 

hand, for a larger than the critical grazing angle, the stationary point A contribution, 

i.e., the refracted wave, will be neglected. When the bottom attenuation is high and 

the scatterer is close to the water/sediment interface, this approach is justified, since 

the ray path of the refracted wave will be much longer than that of the lateral wave. 

The refracted wave would be greatly attenuated because of that. However, we will 

be able to see some differences if the above conditions cannot be satisfied. Mourad 
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and Jackson's approach [1] is somewhat similar to Ivakin's. Instead of regarding the 

propagation as consisting of a spherical wave traveling from the source to the inter- 

face point, the incident wave is considered to be a plane or locally plane wave with 

incident direction allowed to vary over the insonified region in order to match the 

true incident direction. For convenience, we will call the above approach the far-field 

approximation in this work. 

The formula that Hines derived in his paper [14], also a far-field approach, works 

for a two isovelocity half-space environment only. He applied the stationary phase 

method as well. In order to distinguish it from the above-mentioned far-field approx- 

imation, we will name it Hines' method in the later comparison. In a two isovelocity 

half-space situation, gi(kr,z) in Eq.2.21 can be further expressed as 

9i(kr,z)=Twse
ik^z, (2.23) 

where Tws is the transmission coefficient from the water to the sediment, kZl is the 

vertical wavenumber in the sediment, and z is the distance from the interface to the 

scatterer. If Eq.2.21 is rewritten in terms of the angles as plotted in Fig. 2-5 and 

includes the result in Eq.2.18, we will have 

•*•   I kn     r—ioo+TT/2 ,  .  
G(r, z) =e^J-^- Twt(ei)Jcoseie^reoa0i-z'Hn0*+'V«ls-cos'9i)dd    (2 24) 

V &7CT Jioo~-7r/2 

where et is the incident angle and nws = hi/fa. kx here represents the medium 

wavenumber in the sediment. Eq. 2.24 is a little different from that in Hines' paper 

since we choose Q{ to be the incident angle from the water to the sediment instead of 

the opposite. The phase of the integrand is now 

f(0i) = ik0{rcos6i - zssin9i + z^n*,, - cos26i). (2.25) 

nws here can be complex to account for the attenuation in the sediment. According 
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to the stationary phase method, the stationary point can be found from the following 

^ = -ik0 (rsine, + zscoset ^^     ) = 0. (2.26) 

There will be two solutions to Eq.2.26 for a fast bottom. The solution corre- 

sponding to the evanescent wave can be obtained by perturbing the incident angle ß, 

where 

ß = tan-\-zs/r). (2.27) 

The real solution can be found by performing a first-order Taylor expansion, 

6* = P-JJjty (2-28) 

where the prime (') represents the derivative with respect to the incident angle. We 

have to use a complex root finder to obtain the second solution 6r, which corresponds 

to the refracted wave. The perturbation method suggested by Hines has some difficul- 

ties when the actual stationary point is close to a singular point, the critical angle in 

this case. It might also be a problem for 0e and is possibly a cause of the overestimate 

for the field in the region close to the critical angle as can be seen later. 

For the two half-space, fast bottom situation, the incident spherical wave is there- 

fore decomposed into two plane waves: the refracted wave and the evanescent wave. 

The evanescent wave exists only in the subcritical grazing angle region. The station- 

ary phase method gives the results 

W) = || (2.29) 

where 

A{9) = Tws(0)y/^0eiko(rcose-zssine+zy/nl3-cos*0)^ ^ 3^ 

51 



and 

B(e) 
i 

r I rcosO — z*sin6 — z 
cos(29) sin2(26) 

[y/nls-cos->e     4^(n2
ws - cos*6)*l 

),      (2.31) 

For the refracted wave 

and for the evanescent wave 

Gr — Q(9r), 

Ge = Q(6e). 

(2.32) 

(2.33) 

From the results in the next section, this method can be seen to be reasonably 

good for the two isovelocity half-space case, except in the region close to the critical 

angle, where there are more than two stationary points, as pointed out by Westwood 

[54]. However, it is not trivial to find all the stationary points for a bottom with mul- 

tiple layers or with a sound speed gradient because the phase term of the integrand 

in Eq.2.19 becomes much more complicated. 

2.4    Comparison of Propagation Models 

The far-field approximation and Hines' method are widely implemented in bottom 

scattering modeling, especially in high-frequency problems. Yet their validity and 

limitations need to be recognized when dealing with general experimental scenarios. 

In this section, based on real geoacoustic parameters, the above two propagation mod- 

els will be evaluated through comparisons with exact solutions obtained by numerical 

wavenumber integrations. An effort will also be made to identify their possible influ- 

ence on the quantification of bottom scattering. 

We will concentrate on three types of fluid models [cf. Fig. 2-6]: two isovelocity 

half-spaces; two half-spaces with an upward-refracting sound speed profile in the sed- 

iment; a layer with an upward-refracting profile between two isovelocity half-spaces. 
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Figure 2-6: The sound speed profile for three types of bottom: (a) two isovelocity 
half spaces; (b) two half spaces with a sound speed gradient in the bottom; (c) three 
layers with a sound speed gradient in the middle layer. 
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Most of the geoacoustic parameters used in the comparisons are measurement results 

or extrapolations of measured data which have appeared in the literature. In this sec- 

tion, / will stand for frequency, a and p{ will stand for the sound speed and density 

in the overlying water (i = 0), just beneath the water/sediment interface (i = 1), and 

in the lower half space (i = 2) in Fig. 2-6 (c). The density is chosen to be constant 

in each layer. The loss factor Su (i = 0,1,2) is the ratio of the imaginary and real 

parts of the complex wavenumber at the top of each sediment layer. The quantity g 

represents the sound speed gradient, and H stands for the middle layer thickness in 

the three-layer case. The wavelength in the water is given by A, and zs is the source 

height above the water/bottom interface and z is the distance between the scatterer 

in the bottom and the water/sediment interface. The quantity zs and z are scaled 

relative to wavelength A. The source height zs is chosen to be 100A in order to avoid 

the near-field effect, which is true for the whole section. The transmission loss in the 

comparisons is defined as the ratio in decibels between the acoustic pressure at the 

scatterer for a simple point source and the pressure produced at a distance of lm 

from the same source. 

2.4.1    Two Isovelocity Half-Spaces 

The sound speed in the sediment depends on the sediment type. The sediment/water 

sound speed ratio could be larger or smaller than 1, which determines the existence 

of a critical angle. According to Hamilton [58], for soft sediments such as silty clay, 

the sound speed just beneath the water/sediment interface is usually less than that of 

the overlying water. The geoacoustic parameters used in Fig. 2-7, which is consistent 

with Continental Rise data and taken from Fig. 3 in Mourad and Jackson's paper 

[1], is an example. From the field at scatterers situated at z = 0 and z = -2A, it 

can be seen that results of the far-field approximation and Hines' method are almost 

identical to that of the numerical wavenumber integration. There is no critical angle 

and only one stationary point, i.e., scatterers are insonified by the refracted wave 

only. Both approaches are good approximations in this situation. One would expect 
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Figure 2-7: Comparison of transmission loss in the environment with no critical 
angle. Parameters are: / = 500 Hz, c$ = 1530m/s, C\ = 1510m/s, p\ = 1.72g/cm3, 
8 = 0.00164, zs = 100A. The transmitted field at (a) z = 0; (b) z = -2A. 

the calculation of the equivalent surface scattering strength to be appropriate and ac- 

curate without including the multipath effect. Since zs and z are both scaled relative 

to A, the results obtained here and for the two isovelocity half-space case should be 

frequency-independent if the bottom attenuation is linear with frequency, which is an 

open question [59, 60, 32]. 

For sandy bottoms and turbidite bottoms in certain areas, the sediment/water 

sound speed ratio is larger than 1. Input parameters in Fig. 2-8 correspond to the 

Hudson Canyon experiment reported by Rogers et al. [61], where the bottom is de- 

scribed as silty sand and silty clay. We choose the frequency to be 10kHz and assign 

the bottom attenuation to be O.ldB/m/kHz (Si = 0.0027), which is at the high end 

for this type of bottom. The transmitted field is again shown at different depths in 

Fig. 2-8. It is found that the agreement between Hines' method and the numerical 

wavenumber integration technique is fairly good except for some overestimate in the 
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Figure 2-8: Comparison of transmission loss with the critical angle effect for a low 
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Pi = 1.8g/cm3, 6 = 0.0027, zs = 100A. The transmitted field at (a) z = 0; (b) 
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Figure 2-9: The detailed comparison. Parameters are the same as that in Fig. 2-8(c). 

region just below the critical grazing angle. The critical angle (9C = cos-1(cn/ci)) is 

16 degrees and is indicated in the figure. The far-field approximation, on the other 

hand, tends to underestimate the field at subcritical grazing angles. Differences will 

increase with the depth of the scatterer [cf. Fig. 2-8]. In Fig. 2-9, we add the 

evanescent wave and refracted wave contributions to Fig. 2-8 (c). For the far-field 

approximation, it is clear that the neglect of the refracted wave in the subcritical 

angle region is the cause of the underestimate. The small error before the critical 

angle can be attributed to the difference between the true stationary point and that 

used in the approximation. As for Hines' method, the match is excellent everywhere 

except in a small region after the critical angle. This is the transition area from a field 

composed of one stationary point to a field composed of two stationary points, where 

the approximation would normally be invalid, according to Westwood [54]. Another 

possible cause might be the failure of the first-order perturbation method to find the 

stationary point close to the singularity associated with the critical angle. 
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Figure 2-10: The critical angle effect for a high attenuation bottom. Parameters 
are: / = 40000 Hz, o = 1500 m/s, a = 1689m/s, Px = 1.97g/cm3, S = 0.0166, 
zs = 100A. The transmitted field at (a) z = 0; (b) z = -A; (c) z = -2A. 
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For a sandy bottom, the attenuation will be much higher than that for a soft bot- 

tom. The geoacoustic parameters in Fig. 2-10 are from the CBBL Panama City site 

[18]. Frequency of 40kHz is chosen, the same as that in the experiment. It is a sandy 

bottom and the attenuation was found to be 0.524dB/m/kHz, which is equivalent to 

Si — 0.0166 . The critical angle is now 27.4 degrees. The figure shows results similar 

to those in Fig. 2-8 for the field at three different depths. Nevertheless, the differ- 

ence between the far-field approximation and the numerical wavenumber integration 

is smaller than that in the lower attenuation bottom. The interference between the 

refracted wave and the evanescent wave is hardly noticeable at subcritical angles. 

The explanation for this is that the refracted wave has a longer ray path than that 

of the evanescent wave and is therefore greatly attenuated at long ranges in the high- 

attenuation bottom. In other words, the evanescent wave contribution will prevail at 

subcritical angles. So we see from the above that the single stationary point treat- 

ment in the far-field approximation works better in a high-attenuation bottom than 

in a low-attenuation one. 

The effect of different propagation models on the estimation of scattering strength 

estimation is of considerable interest in bottom scattering modeling. In Figs. 2-11 

and 2-12, we have calculated the equivalent surface scattering strength [cf. Eq.2.6] 

associated with volume backscattering using the same parameters as those in Figs. 

2-8 and 2-10. Point scatterers are assumed here for simplicity, and the volume scat- 

tering cross section av is chosen to be 0.00003 in Fig. 2-11 and 0.000906 in Fig. 2-12. 

Both in the ARSRP low-frequency sediment scattering experiment and the CBBL 

high-frequency scattering experiment at the Eckernfoerde Bay site, strong scattering 

layers are found to be a certain distance away from the water/sediment interface 

[9, 6]. So we will choose a scattering layer with a thickness of 50A here starting from 

different depths below the interface. Figures 2-11, 2-12(b)(d)(f) show the difference 

in backscattering strength between the exact solution and the far-field approximation 

result. Since results from Hines' method fit exact solutions very well, but in a very 

narrow region, we consider that it would yield similar outputs and will not discuss it 
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Figure 2-12: The equivalent surface backscattering strength for a high attenuation 
bottom assuming point scatterers. Parameters are the same as that in Fig. 2-10 and 
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here. 

From Fig. 2-11, it is evident that the underestimate of the field at subcriti- 

cal angles for the far-field approximation leads to differences in equivalent surface 

backscattering strength. However, the biggest difference is only about ldB when the 

scattering layer starts right at the interface. On the other hand, when the scatter- 

ing layer begins at greater depths, the difference is larger. For the scattering layer 

starting at two wavelengths beneath the interface, up to 15dB difference appears. 

Also, we notice that the actual level of the backscattering strength in this case is 

only several dB lower than that for the scattering layer starting from the interface. 

Therefore one can hardly distinguish them from the scattering measurement without 

a priori knowledge, which highlights the necessary precautions in scattering modeling 

using the far-field approximation in this environment. When the bottom attenuation 

is low, the penetration is deep. The multipath effect is inevitable. The scattered 

returns will reach the receiver via different paths, therefore different scattering an- 

gles, which makes the angular dependence of the scattering strength less meaningful. 

All of these results cast some doubt on the validity of using the equivalent surface 

scattering strength to characterize the volume scattering process. 

Fig. 2-12 shows similar results for a sandy bottom. The difference in backscatter- 

ing strength is smaller when compared with that in Fig. 2-11. Numerical errors can 

even be seen in Fig. 2-12(e) and (f). The scattering level for a scattering layer deep 

in the sediment is much lower than that at the interface. Since the sand is usually 

a strong scatterer and the bottom penetration is much shallower due to high atten- 

uation, the problems that are addressed regarding Fig. 2-11 are much less serious. 

Both the far-field approximation and the equivalent surface scattering strength are 

appropriate. 
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2.4.2    Two Half-Spaces with Sound Speed Gradient in the 

Lower Half 

Sound speed gradients exist in both the water column and sediment in real ocean 

environments [62] and have significant effects on sound propagation. The gradient in 

the water column is generally small compared with that in the sediment and will be 

neglected. We will therefore focus on the effect of the sound speed gradient in the 

sediment. We will not include Hines' method in the comparisons from now on due to 

the complexity of extending it to complicated sound speed structures. 

In order to obtain an analytic solution, we choose the 1/c2 linear sound speed 

profile, 

c1(z) = cl(l-az)-1/2, (2.34) 

for a real constant a, with units of inverse length. The sound speed gradient at the 

interface is 
dcAz) 

9 = = f • (2.35) 
z=0 * dz 

Figure 2-13 shows the frequency dependence of the comparison between the far- 

field approximation and the numerical wavenumber integration for the case where 

there is a drop in sound speed at the water/sediment interface. The sound speed 

gradient g has a typical value 1.0s-1. The mismatch of the oscillation pattern is 

obvious at 100Hz, but as the frequency increases, the match is better. At 500Hz, 

they are almost indistinguishable. The oscillation here comes from the interference 

between the direct incident wave and the upward-refracted wave. The sound speed 

gradient will determine the path length of the upward refracting ray. At high fre- 

quencies, the refracted wave will be attenuated so much that virtually no interference 

occurs. Therefore the higher the frequency, the better the far-field approximation. 

The elucidation of the mismatch in oscillation patterns rests on the examination of 

the refracted wave. In the far-field approximation, the field is dominated by the in- 

terference between the plane wave incident at a particular angle and the refracted 
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Figure 2-13: The frequency dependence of the comparison results. Parameters are: 
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wave originating from the same angle of incidence. While in the numerical wavenum- 

ber integration approach, the interference involves refracted waves originating from 

many incident angles. It all boils down to the plane wave assumption in the far-field 

approximation, which is not included in the wavenumber integration approach. 

The parameters in Fig. 2-14 correspond to the case where there is an increase in 

sound speed at the water/sediment interface. The gradient g is again chosen to be 

1.0s-1. Fig. 14 shows the field for three different frequencies at two different depths. 

As we anticipated, the field now includes the contribution from the evanescent wave, 

the interface refracted wave and the turning refracted wave, as shown in Fig. 2-15. 

Together, they will determine the interference pattern. The critical angle effect is still 

clear [cf. Sec. 2.4.1]. At higher frequencies, the results approach those for the two 

isovelocity half-space case because the turning refracted wave is strongly attenuated. 

All in all, the far-field approximation will have some problems at low frequency for 

this kind of low-attenuation bottom with a sound speed gradient. As for the high 

attenuation sandy bottom, we would expect similar phenomena as those at high fre- 

quency in Fig. 2-14, as can be seen in Fig. 2-16. The parameters in Fig. 2-16 are the 

same as in for Fig. 2-10 except that the frequency is 100Hz. Also, we have studied 

the effect of the sound speed gradient. The gradient will decide the path length for 

the turning refracted wave, therefore the amplitude, in a bottom with attenuation. 

We would expect higher amplitude for the turning refracted wave in a bottom with a 

larger gradient, because the path length would be shorter. As a result, the oscillation 

is more significant for a larger gradient as shown in Fig. 2-17. 

Again we will study the influence of the propagation model on the quantification 

of the scattering process. We still assume point scatterers here and calculate only 

the backscattering strength. The scattering layer will be considered starting from the 

water/sediment interface only. For a high-attenuation sandy bottom like that used 

to generate Fig. 2-16, we choose av to be 0.000906. As shown in Fig. 2-18, the 

equivalent surface backscattering strength calculated with the far-field approxima- 
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Figure 2-15: The propagation paths for two half-space fast bottom with an upward- 
refracting sound speed profile in the bottom. 
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Figure 2-17: The sound speed gradient dependence. Parameters are the same as that 
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Figure 2-18: The equivalent surface backscattering strength for a high-attenuation 
bottom assuming point scatterers. Parameters are the same as that in Fig. 2-16 
with the starting depth of the scattering layer to be at z = 0. (a) the backscattering 
strength; (b) differences. 
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Figure 2-19: The equivalent surface backscattering strength for a low-attenuation 
bottom assuming point scatterers. Parameters are: / = 2300 Hz, CQ = 1550 m/s, 
C! = 1576m/s, Pl = 1.83g/cm3, S = 0.00193, g = lOs"1, zs = 100A. The scattering 
layer starts at z = 0. (a) the backscattering strength; (b) differences. 

tion is very close to the exact solution. For a low-attenuation, soft sediment bottom, 

we let the geoacoustic input be the same as that for Fig. 15 (b) in Mourad and 

Jackson's paper [1]. Fig. 2-19 shows the backscattering strength predicted by the 

far-field approximation and the numerical wavenumber integration technique. Notice 

that the oscillations are absent for the numerical solution but still present for the far- 

field approximation. An interesting phenomenon appearing in the results obtained 

by numerical wavenumber integration is that the backscattering strength has a drop 

of about 3dB at 16 degrees, which is not shown in the results when the far-field ap- 

proximation is applied. In Mourad and Jackson's figure 15(b), the experimental data 

also shows an 8 - lOdB fall. Although the drop in our prediction does not match the 

data exactly, it is one step closer and suggests that the far-field approximation may 

not be good enough in situations like this. 
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2.4.3    Three Layers with a Sound Speed Gradient in the Mid- 

dle Layer 

A more realistic model of the sediment is to have a basement beneath the wa- 

ter/sediment interface. We still choose a 1/c2 linear sound speed profile below the 

water/sediment interface but constant sound velocity in the basement. Scatterers are 

assumed to be distributed in the middle layer. The presence of an additional layer 

interface enables the insonification of scatterers through some extra paths, i.e., the 

single or multiple bounces between the two interfaces, which is similar to some degree 

to the situation where there is a sound speed gradient in the bottom. The turning 

point there can be considered to be the virtual lower boundary. 

One would gather that the middle layer thickness H is likely to play an important 

role in the interference between multipath rays. Fig. 2-21 shows the field at the 

water/sediment interface for different middle layer thicknesses. The parameters for 

the middle layer are the same as those for Fig. 2-13(c) and correspond to a slow 

bottom. For the thin middle layer, the "frequency" of the oscillation is lower than 

that of the thick layer. However, the agreement between the far-field approximation 

and the exact solution is better. The "frequency" of the oscillation is related to the 

rate of the phase change for the transmitted wave with the change of the incident 

angle. For a thicker middle layer, a small change of the incident angle would cause 

a big change of the phase of the transmitted then reflected wave, which results in 

high "frequency" oscillations. The interference pattern will depend on the phase of 

the reflected rays and therefore on the layer thickness. The geoacoustic input for Fig. 

2-22 for the upper two layers is the same as that for Fig. 2-12(b), corresponding to 

a sandy bottom. Although the argument for the "frequency" of the oscillation still 

holds, the level of oscillation is much smaller because of the high attenuation. In 

conclusion, the far-field approximation works better for a high-attenuation than for 
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Figure 2-21: The middle layer thickness dependence for a three layer environment 
with a low attenuation middle layer. Parameters are: / = 500 Hz, CQ = 1530m/s, 
ci = 1510m/s, c2 = 1800m/s, px = 1.72g/cm3, p2 = 1.9#/cm3, Sx = 0.00164, 
S2 = 0.019, g = Is"1, za = 100A, z = 0 and (a) H = 2A; (b) H = 10A. 

73 



-80 

 Wavenumber integration 
— Far-field approximation 

30 40 50 60 70 80 

-80 

20 30 40      50 
Grazing angle (degrees) 

60 70 80 

Figure 2-22: The middle layer thickness dependence for a three-layer environment 
with a high attenuation middle layer. Parameters are: / = 100 Hz, Co = 1500m/s, 
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0.019, g = As'1, zs = 100A, z = 0 and (a) H = 2A; (b) H = 10A. 
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a low-attenuation bottom in three layer case. 

2.5    Summary 

In this chapter, we have compared several propagation models that are widely used 

in scattering studies with the exact solution obtained by a numerical wavenumber 

integration technique. 

Hines' method, which decomposes the spherical wave into two plane waves: the 

refracted wave and the evanescent wave, matches the exact solution very well in a two 

isovelocity half-space scenario. The overestimate of the field in a small region close 

to the critical angle only affects the results at less than two degrees of grazing angle 

in our comparison, which is tolerable. Yet the difficulty in obtaining the stationary 

points easily and accurately hampers its generalization to more complex sound speed 

structure. 

The far-field approximation, on the other hand, can be easily implemented in 

complicated bottom models, partly because it includes only one stationary point and 

has simplified its stationary point searching procedure by sacrificing some accuracy. 

As a result, the agreement with the exact solution is somewhat case-dependent. In a 

two isovelocity half-space model, the approach works almost perfectly if there doesn't 

exist the critical angle at the water/sediment interface, which is likely to be the case 

for a great amount of soft sediment types such as mud and silty clay. However, in 

some environments, the presence of the critical angle for such low-attenuation, soft 

sediment will find some underestimate of the field at subcritical angles. The situation 

is worse for deeper scatterers. This is because of the omission of the refracted wave 

past the critical angle inherent in the far-field approximation. The high attenuation 

in sandy bottoms would ease the problem to some extent by attenuating the refracted 

wave due to its long path. As for the influence on the equivalent surface scattering 
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strength calculation, results are encouraging if the scattering layer starts from the 

water/sediment interface. However, when the scattering layer starts some distance 

away from the interface, which is unlikely for a sandy bottom but possible for soft 

sediments, the error introduced by applying the far-field approximation is significant. 

The occurrence of the sound speed gradient in the sediment provides an additional 

propagation path, i.e., the turning refracted wave, which contributes to the determi- 

nation of the interference pattern. The attenuation together with the frequency and 

the gradient controls the amplitude and phase of the turning refracted wave. There- 

fore, the results of comparisons are frequency- and gradient-dependent. In general, 

the far-field approximation fares better for a high-attenuation, low-gradient bottom. 

While for a low-attenuation bottom, the difference is considerably large, as can be 

seen in the equivalent surface scattering strength calculation. 

Sediment layering is common in a real ocean environment. In the three layer case, 

the bounce of the acoustic wave between two interfaces adds to multipath phenom- 

ena. The oscillation of the field is sensitive to the layer thickness no matter what 

type of sediment is in the middle layer. High bottom attenuation is again helpful 

in alleviating the multipath effect, i.e., the oscillation. The far-field approximation 

matches the numerical wavenumber integration better for a thinner middle layer and 

a higher attenuation situation. 

The validity of using the equivalent surface scattering strength to characterize the 

volume scattering process is debatable. Because of the evident multipath contribu- 

tion to the field in many cases discussed in the comparison, the obtained angular 

dependence of the equivalent surface scattering strength is under question. However, 

as shown in our results, it is still reasonable to apply the equivalent surface scattering 

strength concept in some high-frequency and high-bottom attenuation bottom scat- 

tering studies. 
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Chapter 3 

Formulations for Modeling Bottom 

Volume Backscattering 

A sound wave can be scattered by a region in which the acoustic properties of the 

medium differ from their values in the rest of the medium. Sound speed and den- 

sity fluctuations are generally considered the major contributors to volume scattering. 

Although the effect of density fluctuation is insignificant within the water column, ac- 

cording to Chernov [33], it is often the dominant factor in the case of bottom backscat- 

tering from sediment volume inhomogeneities [14]. Prom a practical point of view, a 

statistical approach seems to be the only resort for people to model such small scale 

features. The fluctuations of sound speed and density in the bottom are usually small 

due to the nature of sedimentation process. Therefore, the method of small pertur- 

bation is suitable and widely used in volume scattering modeling [7,14, 17, 28, 33, 35]. 

In this chapter we will derive the formula for modeling volume scattering due to 

sound speed and density fluctuations. It is similar to Morse and Ingard's [17], Cher- 

nov's [33] and Hines' [14] approaches and used by Tang in the study of shallow water 

reverberation [8]. Also, one section will concentrate on various power spectral den- 

sity functions and correlation functions that are going to be used in describing sound 

speed and density fluctuations. In another section, we will present the analytical 

solution for backscattering from different kinds of random sound speed fluctuations 
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in a free-space scenario. 

3.1    Volume Scattering Theory 

As shown in the previous chapter, the wave equation in an inhomogeneous medium 

can be written as 

p(r)V.(^VP(M))-^^ = /M), (3,) 

where p(r, t) represents the pressure, p(r) represents the density, c(r) represents the 

sound speed, and /(r, t) represents the source term as a function of space r and time t. 

Assuming a point source and harmonic time dependence exp(icjt), the inhomogeneous 

Helmholtz equation is [33]: 

[V2 + *2(r)] P(r) - ^ . VP(r) = SJ(r - rs), (3.2) 

where the source strength is Sw. We assume that the background density is constant 

and the background sound speed only varies with depth z. With small variations in 

both density and sound speed, we have 

P(r)   =   Po + Sp(r) 

c(r)   =   co(z)+6c(r), (3.3) 

where Sp(i) < p0 and 6c(r) < CQ(Z) and they both have zero means. 

If we expand the Helmholtz equation and keep up to first-order of smallness with 

respect to p and c, Eq.3.2 becomes 

[V + »SW - *»W) - WL ■ VP(r) . SJ(I - r,). (3.4) 
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The total pressure field can also be expressed as the summation of the mean field 

PQ(T) and the scattered field Ps(r): 

P(T) = P0(T) + PS(T). (3.5) 

We can obtain the equation for the mean field Po(r) by inserting this summation in 

the equation above and averaging: 

[V2 + A;0
2(,)]Po(r)-(^MMps(r)) 

Co{Z) 

_(Z(W).vP,(r))=S^(r-r.). (3.6) 
A) 

Subtracting this equation from the full averaged Helmholtz equation, we can get an 

equation for the scattered field: 

(V + kl(z)]P,M = ^Mp.(r) + ^ME» . VP0(r). (3.7) 

It is interesting to notice that the two terms on the RHS caused by sound speed 

and density fluctuation act like virtual sources. As discussed by Morse and Ingard 

[17], the first term comes from the fact that the small region at r doesn't have the 

same sound speed (therefore compressibility) as the surrounding medium, which re- 

sults in a monopole-like source distribution. The second term gives rise to dipole-like 

scattering phenomenon because the small region doesn't move in response to the force 

VPo with the same velocity as does the surrounding medium due to the difference 

in density. This dipole source would have a null in the forward scattering direction 

but its major axis is in the backscattering direction, which makes density fluctuations 

a significant contributor to backscattering. As a result, it is of great importance to 

include density variations in volume backscattering modeling. 

For the weak volume scattering problem, a usual assumption is that the effect of 

the scattered field on the mean field can be ignored (Born Approximation). Therefore, 
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Eq.3.6 becomes: 

[V2 + k2
0(z)]P0(r) = SJ(r - rs). (3.8) 

The corresponding Green's function can be obtained from 

[V2 + *g(r)]G(r,r.) = tf(r-r.), (3.9) 

and the boundary conditions. 

Also, the sound speed variation and density variation are often considered linked, 

which would simplify the problem. As discussed by Hines [14], for a random sediment 

bottom, both fluctuations can be expressed as functions of the bottom porosity p: 

8c   =   —6p 
dp 

5p   =   'd'Sp' (3-10) 

where 5p is the variation in bottom porosity. If we use the notation 

e(r)   =   — 
Co 

-r  =  ß<r), (3.11) 
Po ' 

where ß is the ratio between density variation and sound speed variation, the scattered 

field equation becomes 

[V2 + k2
0(z)]Ps(r) = 2k2

Q(z)e(T)P0(r) + /?Ve(r) • VP0(r). (3.12) 

Applying Green's Theorem to the equation above, we have 

Ps(Rr) = jf [2k2(z')e(r')P0(v') + ßVe(r') ■ VP0(r')]G(Rr, r')dr', (3.13) 
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where Rr stands for the receiver position and r' stands for the scatterer position. 

After integration by parts, the scattered field equation can be further expressed as 

Ps(Rr) = / €(r')[(2 + ß)kl(z')P0(r')G(Rr,r') - /?(VP0(r') ■ VG(Rr,r'))]dr'. (3.14) 
Jv 

The scattered intensity Is can then be obtained by 

Is   =   <|Ps(Rr)|
2> 

=    /   / (6(r1)6*(r2))[(2 + ^)fc0
2(z1)Po(r1)G(Rr,r1)-^(VPo(ri)-VG(Rr,r1))] 

Jvi  JV2 

[(2 + ß)k2
0(z2)P*(v2)G*(Rr,r2) - /?(VP0*(r2) • VG*(BT>ra))]dr1dra.     (3.15) 

Here (*) stands for complex conjugate operation. 

In the above equation, (e(ri)e*(r2)) is the correlation function of the sound speed 

fluctuation. Since the value of the sound speed variation must be a real number, (*) 

can be omitted from the correlation function expression. In this weak volume scat- 

tering model with the Born approximation, we can see that the scattered intensity 

is determined by the second-order statistics of the random sound speed and density 

variations if the propagation part is known. So it is worthwhile to devote the next 

section to different kinds of correlation functions to be used in volume scattering 

modeling. 

If scattering time series are of interest, we can apply the technique of Fourier 

synthesis. The scattered return y(t) can be calculated by 

1    r°° 
y(t) = 7T       P,(Rr,w)S(w)exp(iwt)du, (3.16) 

Z7T J-oo 

where u> is the radial frequency and S^u;) is the spectrum of the source signal. This 

equation will be used in Chapter 5 to generate scattering time series. 

The validity of the volume scattering formula is not restricted to layered fluid 
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media. As far as scatterers are located in the fluid layer, the bottom can be fluid, 

fluid-elastic, or elastic layered media. The random scattering layer is not necessarily 

immediately beneath the water/sediment interface. The attenuation of both com- 

pressional waves and shear waves and the background sound speed gradient are easily 

incorporated into the model because they are taken care of in the calculation of the 

Green's function by OASES. This theory will be suitable for studying scattering by a 

sediment bottom, where interface roughness does not necessarily dominate the scat- 

tering process. This is exactly the situation that we encountered in the ARSRP 

scattering experiment. 

3.2    Correlation Functions of Sound Speed Varia- 

tions 

The second-order statistics of sound speed and density variations are of great impor- 

tance to volume scattering modeling, as can be seen in the section above. However, it 

is difficult to have direct measurement of such sediment properties, let alone a good 

model of them. Traditionally, Gaussian and exponential correlation functions have 

often been used because of their mathematical simplicity [14, 33, 35]. Recently, a 

power-law type of correlation function has attracted more interest [53, 63]. Mean- 

while, Yamamoto, in his measurement of velocity variability using crosswell acoustic 

tomography, found the measured power spectra approximate a power law [64]. Still 

it is hardly conclusive that the power-law type power spectral density is the best 

description of velocity variations in the sediment. Therefore, we choose to include all 

three of them in our model. 

In the beginning of this chapter, we have defined two random variables, the relative 

sound speed variation e and the density variation. Since they are assumed to be fully 

correlated, only the statistics of e will be dealt with from now on. In addition to the 

82 



zero mean assumption regarding e, we require that the sound speed fluctuation be 

a homogeneous random variable. In other words, the process is spatially wide-sense 

stationary, by which we mean that the covariance of the random variable is invariant 

with respect to spatial translation, 

(e(r1)e(ra)> = C(r1-ra). (3.17) 

One may argue that stationarity can never be achieved in a real environment. Nev- 

ertheless, from a practical point of view, it is a reasonable assumption if we confine 

ourselves to a small enough region so that the change across the whole region is little. 

Alternatively, a random process can be characterized in the wavenumber domain by 

its power spectrum 

/OO       TOO      fOO 

/     /     C(r) exp(-ik • r)dr, (3.18) 
-OO J—OO J—OO 

where k = (kx, hy, kz) is the wavenumber vector. 

For a horizontal correlation function to be Gaussian or exponential, we assume 

that the correlation function of the quantity e(r) is horizontally and vertically decou- 

pled [7, 28, 35]: 

C{vx - r2) = <€(n)e(ra)) = a2N(l)M(\Zl - z2\), (3.19) 

where the horizontal vector 1 = [(xi — x2), (yi — 2/2)], and a is the standard deviation 

of e. Geoacoustic evidence [29] showed that the vertical correlation length lz is much 

smaller than the horizontal correlation length lx and ly. For the sake of convenience, 

the vertical correlation function M(z) is chosen to be exponential, i.e., 

M(z) = exp(-J^). (3.20) 
lz 
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Its Fourier transform is 

*<*■> = TTW (3-21> 

The horizontal correlation function JV(1) can be both Gaussian and exponential. For 

a Gaussian correlation function, we have 

N(x,y) = eM-hr)2 + (f-f]). (3-22) 

(Notice a factor of 1/2 difference in the exponential compared to that in Chernov's 

[33] and Tang's [35] work.) The corresponding Fourier transform is 

1.2/2   ■   1.2/2 

W(kx,ky) = 2irlxlyexp(- **yylv). (3.23) 

As for the exponential correlation function, there are two choices:   one is for an 

isotropic random field, 

N{\) = exp(-fil), (3.24) 

with l0 the correlation length and the Fourier transform 

2-KI
2 

the other is for an anisotropic random field 

JV(x,y) = exp(-[M + M])> (3.26) 

with a corresponding Fourier transform 

Al I 

^^^Aiff (3-27) 

The second function will not degenerate to the first one even if lx = ly, because 
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of a discontinuity at zero lag. However, as discussed by Ivakin and Lysanov [28], 

this can be corrected by introducing a second length scale to represent the minimum 

inhomogeneity scale in Eq.3.24, thereby obtaining 

exp(-W)-eexp(-W) 
iV(l) =       V   hJ      —lA (3.28) 

where e = 1\/IQ and li <C /o- Under the condition that e —> 0, it is equivalent to 

Eq.3.24. 

The Von Karman function, which has a power-law type of spectrum, is used as 

a correlation function to describe turbulence (Tatarski [65]), to characterize hetero- 

geneity in the earth's crust (Frankel and Clayton [63]), and to model the seafloor 

morphology (Goff and Jordan [66]). In this work, we will follow Goff and Jordan's 

approach. First, a set of functions are defined 

G„(6(r)) = W(r)Ku(b(r))    0 < & < oo, (3.29) 

where Kv is the modified Bessel function of order v and 

b(v) = [rTQv]^2. (3.30) 

Here (T) stands for the transpose operation, and Q is a positive-definite, symmetric 

matrix whose Cartesian elements ^ have dimensions of (length)-2. In the three- 

dimensional case, it can be expressed in terms of its normalized eigenvectors en, es, 

and et and its ordered eigenvalues k2 > k2 > k2, 

Q = k2
nenel + A;s

2ese^ + k2
tetej. (3.31) 

The Q matrix carries information about the anisotropy of the random field. While 

kn, ks and kt correspond to the inverses of the correlation lengths in three dimensions 

respectively. For a two-dimensional case, simply drop the kt term in the expression. 

85 



The correlation function can then be set to be 

oGJb(r)) 
°V = ^-ITlJr- (3.32) Gv(0) 

The power spectrum for a two-dimensional random field is 

W(kx, ky) = < 
4na%ly n I3-33) 

Because we are interested in monostatic backscattering in this work, azimuthally- 

summed random fields will be generated as shown in Chapter 4. The x and y axis are 

then chosen to be overlaid with en and es, i.e., no skew. Figures 3-1 and 3-2 show 

the correlation functions and power spectra for several value of u (same as Fig. 2 in 

Ref. [66]). An asymptotic roll-off rate -2(v + 1) of the spectrum is related to the 

fractal (Hausdorff) dimension Dfractai of such a stochastic process as: 

Dfractal = 3 - V. (3.34) 

Therefore, decreasing the parameter v would increase the roughness, which is the 

case for the three-dimensional case as well. In the special case of v = 1/2, the 

power spectrum reduces to the isotropic exponential power spectrum when lx = ly. 

Of course, we can construct a vertically uncorrelated random field model with the 

randomness in each layer specified by the above two-dimensional power-law type of 

power spectrum. For a correlated three-dimensional case, the power spectrum is 

W(k   k   !:)-        W^W^2r(^ + 3/2) 
[x'y'z)" r(i/)(i+im+km+kft)"**/*' (3-35) 

where T represents the Gamma function. The roll-off rate now is -2(i/ + 3/2) and 

the related fractal (Hausdorff) dimension is 

Dfractai =4-1/. (3.36) 
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Figure 3-1: Functional form of the correlation function G„{b) plotted for values of 
v = 0,1/2, and 1. 

'S   _ 

Figure 3-2: Normalized power spectra plotted in log-log space. 
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Figure 3-3: Normalized isotropic power spectra for different kinds of correlation func- 
tions {lx — ly = lm, v = 1 in power law distribution). 

As can be seen in Fig. 3-3, the isotropic power spectra (lx = ly) for Gaussian, 

exponential and power law distributions have different roll-off rates versus wavenum- 

ber even with the same correlation length. For a Gaussian distribution, the spectral 

level at high wavenumber is low, which translates to a lack of small-scale roughness. 

On the other hand, there are significant amounts of energy in high wavenumbers for 

exponential and power law distributions. This is consistent with the fact that there 

is abundant small-scale roughness with the latter two distributions. 

3.3 Backscattering from Sound Speed Variations 

in the Free-Space Scenario: Analytical Solu- 

tions 

Analytical solutions for volume backscattering can be achieved in some special situ- 

ations such as the free-space scenario. By free space, we mean that the background 
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Free-Space Scenario 

Source/Receiver 

D 

Figure 3-4: The free-space monostatic backscattering scenario. 

sound speed and density are constants throughout the media. Because monostatic 

backscattering is the concentration of this work, solutions will be given only for this 

scenario. Meanwhile, only sound speed variations will be discussed for the sake of 

mathematical simplicity, i.e., ß = 0(the effect of density variations will be studied 

later in Chapter 5). Figure 3-4 shows the scenario that we are going to study in 

this section. In the figure, H represents source/receiver height, 6 is the scattering 

angle, D is the thickness of the random scattering layer, and R is the distance be- 

tween source/receiver and scatterers. We choose the background sound speed to be 

1500m/s and the density to be 1000kg/m3 for the rest of the chapter. 

In free space, the Green's function for a point source is well known as: 

C?(Rp,r) 
exp(—zk • R) 

4nR       : (3.37) 

where R = Rr — r and R = |R|. Therefore, for monostatic backscattering and unit 
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source strength, Eq.3.15 becomes 

'^ll^-^t^ü^^ (3,8, 
If we have Rx and R2 much larger than the scattering volume dimension L, with 

L much larger than the correlation length of the random field, Ri and R2 can be 

approximated by the distance between the source/receiver and a reference point in 

the scattering volume R. After performing the coordinate transformation to center 

coordinate r0 and relative coordinate £, we have 

4/u       c  f°° 

'•=wwL L °® exp(-2ik • o* *»• <3-39) 
Bear in mind that the correlation function depends only on the relative coordinate. 

By expanding the integration limit of the relative coordinate to infinity, we have 

actually neglected the influence due to the existence of physical boundaries, which 

will result in some differences when compared with solutions including the boundary 

effect. For a thin layer of scatterers, the equivalent surface backscattering coefficient 

£ can be obtained by 

E = 
ISR

2 

•■in-' 

where Iin is the intensity of the incident source wave a unit distance away from the 

scattering region, R is defined above as the distance between the source/receiver and 

a reference point in the scattering region, and A is the insonified area(here actually 

the top of the scattering volume) [52]. The backscattering strength is simply 

BSS = lO\og10Z. (3.41) 

For a point source with unit source strength, 

Iin = (W (3-42) 
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Therefore, £ can be calculated by 

E = ^4 / / C{£) exp(-2ik • £)d£ dr0. (3.43) 

In the rest of the section, we will compute £ for different correlation functions that 

have been introduced in the previous section. Although the goal of this work is to 

model monostatic backscattering from the inhomogeneities of a full three-dimensional 

random field, we opt to investigate first backscattering from two-dimensional pseudo- 

surfaces with sound speed variations (instead of height perturbations in the usual 

surface scattering problem) in hopes of obtaining some insights before complicating 

the problem further with another dimension. In fact, scattering from this pseudo- 

surface is equivalent to that from a vertically uncorrelated Ira layer with the same 

horizontal correlation structure. While at the end of this section, the effect of vertical 

correlation will be evaluated. 

3.3.1    Backscattering from 2-D Isotropie Random Field 

By isotropic we mean that the correlation lengths for the random field in x and y 

direction lx and ly are equal to lr. 

For a Gaussian correlation function, the backscattering coefficient can be obtained 

as: 

£(0) = ^Sexp(-2A;2Z2cos20), (3.44) 

where 9 is the scattering grazing angle. 

Figure 3-5 shows the relation between the backscattering strength and the product 

of horizontal wavenumber K and a, which equals to \pllT for the Gaussian distribu- 

tion. It can be noticed that the backscattering strength has a peak around Ka = 1 

and decays rapidly otherwise.  As discussed by Chernov [33], Ka «C 1 corresponds 
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Figure 3-5: Backscattering from sound speed variations with a 2-D isotropic Gaussian 
correlation function. 

to backscattering from small-scale inhomogeneities, which results in isotropic scat- 

tering. For Ka » 1, the scattered power will be concentrated at a small forward 

angle; therefore the backscattering is weakened. The reason that the backscattering 

has only one "resonance" for the Gaussian distribution has a lot to do with the fact 

that the Gaussian distribution is a single-scale model. 

As for an isotropic exponential correlation function, the backscattering coefficient 

is 

S(*) = 
k4a2l2

r 

2ir[l + (2klrcose)2]3/2 (3.45) 

As shown in Fig. 3-6, the backscattering strength decays much slower versus Ka 

than with a Gaussian distribution. Here K again is the horizontal wavenumber and 

a = lr. The explanation for this behavior is that a random field with an exponential 

correlation function has its energy distributed almost equally among all wavenumbers, 

i.e., it is a multi-scale model. It means that the random field would have roughness 

at all the scales, which makes it an effective scatterer for various wavelengths or 
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Figure 3-6: Backscattering from sound speed variations with a 2-D isotropic expo- 
nential correlation function. 

scattering angles. We would expect that the backscattering strength has a different 

decaying rate versus scattering grazing angle for a Gaussian correlation function and 

an exponential correlation function as well. 

For a correlation function with a general power-law type of power spectrum, we 

have the following backscattering coefficient: 

E(0) = 

fcWZ2 

Trfl + ^cosfl)2]^1 

fcVg 0 
I 7r[l + (2Mrcos0)2] 

i/^0 
(3.46) 

Figure 3-7 depicts that the backscattering strength versus Ka for v = 1 with 

a = lr. Similar to the random field with an exponential correlation function, the 

backscattering strength decays slowly when Ka increases. 

If we plot together the backscattering strength for the above three types of corre- 

lation functions, it is evident that the decaying rate versus Ka is essentially related 

to the roll-off rate of their power spectra. It is the roll-off rates that determines the 
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roughness at small length scales therefore the backscattering at large Ka. 

3.3.2    Backscattering from 2-D Anisotropie Random Field 

The effect of anisotropy on monostatic backscattering will be studied in the following. 

By anisotropic we mean that the correlation length lx ^ ly. Since the scenario with a 

co-located point source and receiver is of interest in this work, an annulus would be 

insonified for each scattering angle. 

In the case of a Gaussian correlation function, the backscattering coefficient can 

be derived as 

=   k4<fl*ly r exp(-2fc2 cos2 fl(/2 cos2 <f> + ll sin2 <ß))d<f> 
4TT

2
     JO 

=   ^^exp(-k2coSH(ll + ll))I0(k
2 cos'6(ll-ll)),        (3.47) 

where <f> is the azimuthal angle and I0 represents the zeroth order modified Bessel 

function of the first kind. Figure 3-9 shows the backscattering strength versus graz- 

ing angle for different combinations of horizontal correlation lengths in the x and 

y directions. It appears that slopes of backscattering strength versus grazing angle 

are different for different combinations. In the isotropic case, a random field with 

lr = 0.6m is more effective in backscattering than that with lr = lm and further with 

lr = 2m. Therefore, on the one hand, a random field with ly = 0.6m would improve 

the overall backscattering ability compared to one with ly = lm. On the other hand, 

a random field with ly = 2m would have a negative impact on total backscattering. 

The azimuthal dependence cannot be discerned because of the omnidirectional source 

and receiver. 

For an anisotropic exponential correlation function, the backscattering coefficient 
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Figure 3-9: Backscattering from sound speed variations with a 2-D anisotropic Gaus- 
sian correlation function. 

is 

k4a2LL   r2« 

Jo 

d<j) Y,(6) = '" "   x y  
2TT

2
    JO    [1 + (2klx cos 0 cos <£)2][1 + (2kly cos 6 sin <ß)2] (3.48) 

What we see in Fig. 3-10 is similar to that in Fig. 3-9. However, the differences 

among three combinations are not as big as that for a Gaussian distribution. From 

Fig. 3-8, one can notice that the decay rate versus Ka is much smaller for an ex- 

ponential distribution than for a Gaussian distribution. As a result, the change of 

correlation length in one direction will not have as strong an influence. 

For an anisotropic correlation function specified by Eq.3.32, the backscattering 

coefficient becomes 

E(0) = 

d(j) 
2?r2 

r tfvaPlJ,,  [2* 

ly 

2TT
2
      JO    [1 + (2klx cos 0 cos (j))2 + (2kly cos 0 sin <j>)2] 

^X^IJ        / 

Jo    [1 + (2fcZx cos 0 cos <t>)2 + (2kly cos 0 sin <f>)2Y+l   U ^ ° ,       . 
d(f> (3.49J 

I v = 0 

As can be seen in Fig.  3-11, the differences in backscattering strength due to the 

96 



-30 

-32- 

m 
H.-34 

CO 
531-36 ■ 

a-38- 

-40- 

-42 

1 i 1 1 r         i           i           i           i 

S>y 

4^; y 

f]y^^ y  '.'.'. 
^X"T       s' 

'1^^" 

-" " JS^      :-'' 

-•'''     ; — Ix=1m,ly=0;6m 

 Ix=1m,ly=2rn 

•        i        i i           i           i 

20 25 30 35 40 45 50 55 60 65 70 
Grazing angle (degrees) 

Figure 3-10: Backscattering from sound speed variations with a 2-D anisotropic ex- 
ponential correlation function. 

-28 

-30- 

-32 

CD 

S.-34- 

£-36- 
tn 
o> c 
1-38- 

o^tO- 

-42- 

-46 

1 1           1            1           1           1           1           1 

:'.'.:.'.'. *y 

y /    / 

  

'.   *       S        y': 
 :. jf'f^ . .      .jf) •.'. . ." ; _ 

• *''         s^    '■    y              '■ 

■ *,"             _^^        y 

-'''" 

-■-•"'t' 
'-.-. . lx=im,ly=o;6m. 

; lx=1m,ly=1m 

20 25 30 35 40 45 50 55 60 65 70 
Grazing angle (degrees) 

Figure 3-11: Backscattering from sound speed variations with a 2-D anisotropic Von 
Karman function as the correlation function (u = 1). 

97 



change of correlation length in the y direction are larger than that with an exponential 

distribution but smaller than that with a Gaussian distribution. This is consistent 

with the fact that the decay rate of the backscattering strength versus Ka in this case 

is larger than that of an exponential distribution but smaller than that of a Gaussian 

distribution. 

3.3.3    Effect of the Vertical Correlation 

For the sake of simplicity, the random sound speed and density variations are some- 

times modeled as vertically uncorrelated [7]. What we will show next is the difference 

in backscattering strength versus grazing angle for vertically correlated and uncorre- 

lated random fields. As we discussed in the previous chapter, the scheme to character- 

ize volume backscattering using equivalent surface scattering strength versus grazing 

angle is only valid when the scattering layer is thin with respect to the wavelength 

and the source/receiver are far away. The environmental parameters will be chosen 

to fulfill this requirement. In the following, we will present only analytic solutions for 

backscattering from random fields with an isotropic Gaussian or exponential distri- 

bution horizontally and exponential distribution vertically. 

With an exponential correlation function in the vertical direction, the backscat- 

tering coefficient for a horizontally isotropic Gaussian distribution is 

where lz is the vertical correlation length and D is the layer thickness. For a horizon- 

tally isotropic exponential distribution, the backscattering coefficient becomes 

v-\//j\   K O lrlzU 
K ' ~ TT[1 + (2klz sin 0)2] [1 + (2klr cos 0)2]3/2' (3-51) 

It is evident from the above two equations that vertical correlation does affect the 
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Figure 3-12: Backscattering from sound speed variations with an isotropic Gaussian 
distribution horizontally and an exponential correlation vertically (a = 0.05, lx = ly — 
2m, f = 400Hz, H = 400m, D = 7.5m). 

angular dependence of the backscattering strength. The effect is insignificant when 

(2klzsin6)2 <C 1, which can be approximated by a vertically uncorrelated model. 

However, this condition can be satisfied only at very low frequency and small ver- 

tical correlation length. Otherwise, such an effect should not be ignored. When 

(2klz sin 6)2 » 1, small changes in lz will not have strong influences on the angu- 

lar dependence but only the overall levels of backscattering strengths. While with 

(2/^ sin 0)2 « 1, we would expect that the angular dependence of the backscattering 

strength to be very sensitive to the change of klz. 

Figure 3-12 and Fig. 3-13 are two examples to show the effect of vertical correla- 

tion. Figure 3-12 depicts the backscattering strength for a 7.5m thick random layer 

with a Gaussian correlation horizontally. Figure 3-13 is for an exponential distribu- 

tion horizontally. The correlation lengths lx and ly are chosen to be both 2m. The 

standard deviation of sound speed variations is 5% and the frequency is AOOHz. We 

present the backscattering strength curves for different vertical correlation lengths 

lz.   In both plots, there is a thin solid line representing the uncorrelated case, for 
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Figure 3-13: Backscattering from sound speed variations with an isotropic exponential 
distribution horizontally and an exponential correlation vertically (a = 0.05, lx = ly = 
2m, f = 400Hz, H = 400m, D = 7.5m). 

which we use the solutions of a 2-D isotropic distribution. The justification for this 

comes from the fact that the 3-D solution will not converge to the uncorrelated case 

with lz = 0 due to the discontinuity of the exponential correlation function discussed 

earlier. Fortunately, what interests us most here is the angular dependence of the 

backscattering strength, which is well embedded in the 2-D solution. As can be 

seen from both figures, the angular dependence of the backscattering strength for 

lz = 0.07m is very close to that of an uncorrelated model. However, as lz increases, 

we can see the backscattering strength level increases for smaller grazing angles, which 

cannot be predicted by a vertically uncorrelated model. In Fig. 3-8, the backscat- 

tering strengths possess peak values for certain Ka. Similar behavior is expected for 

the backscattering strength versus kzlz, where kz is the vertical wavenumber. The 

backscattering strength includes contributions from both the horizontal correlation 

and vertical correlation. As the grazing angle decreases, the horizontal wavenumber 

K increases and the vertical wavenumber kz decreases. The contribution due to the 

horizontal correlation will decrease since Ka increases, i.e., moving away from the 

peak, while the contribution from the vertical correlation might increase because of a 
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smaller kzlz. As a result, there is a possibility for the backscattering strength curve to 

ascend at small grazing angles, which would not happen for a vertically uncorrelated 

random medium. 

In conclusion, modeling the vertical correlation of the random sound speed and 

density variations is important in order to capture the full scope of the scattered field, 

which has justified our efforts to model backscattering from 3-D random volume in- 

homogeneities in the sediment. 
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Chapter 4 

Generation of 

Azimuthally-Summed 3-D Random 

Sound Speed Variations 

4.1    Statement of the Problem 

The objective of this research is to develop a model that can account for monostatic 

backscattering from 3-D volume inhomogeneities. 

The scenario of a water layer on top of the sediment layers is considered here with 

source/receiver co-located in the water column. By applying the method of small 

perturbation and the Born approximation, the scattered field Ps due to sound speed 

perturbation (ß = 0 here for simplicity) in the sediment volume can be expressed as 

(cf. Eq.3.14): 

P>,R) = Am I   £(R1)(2^G'2(R,R1))dF1. 
JVi 

where A is the sound strength and m is the density ratio between the top of the sedi- 

ment layer and the water, w is the radial frequency, R and Rx are the source/receiver 

position and scatterer position, respectively. The relative sound speed perturbation 
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is represented by e = 8C/CQ, ki is the background wavenumber in the sediment, V\ 

is the scattering volume and (2(R, Ri) stands for the Green's function between the 

scatterer and the receiver. If the above integral is carried out in cylindrical coordi- 

nates, dV\ can be expanded as r dr d<f> dz. By observing the above integral, it can be 

seen that only e is dependent on <j>. So instead of generating e in 3-D, if 

r2w rzir 
V(r,z) = /     e(r,<f>,z)d<f), (4.1) 

J 0 

can be generated, the 3-D problem is reduced to a 2-D problem. Since the scattering 

intensity is of most interest to us, the generated sound speed perturbation should 

possess the desired second-order statistics. 

As for the random field generation, the algorithms can be catergorized into two 

classes: one that is implemented in the spatial domain and another that is imple- 

mented in the spectral domain. The spectral method [19] is more popular than 

the spatial method in the underwater acoustics community because of its efficiency 

in generating large, multi-dimensional fields. It was applied by Thorsos [67] in his 

study of rough surface scattering from a 1-D Gaussian random surface. The 2-D 

Goff-Jordan power law spectrum [66] is also extensively used to simulate the seafloor 

[7, 68]. Nevertheless, the literature on 3-D random field generation can hardly be 

found in underwater acoustics, in contrast to the large number of papers in water 

resource research literature [69, 70, 71]. The reason may rest on the fact that the 

computational requirement is too big for the scale of the random field that we are 

dealing with in underwater acoustics. To serve the purpose of this research, the spec- 

tral method is used because of its simplicity and the availability of analytical forms of 

different power spectral density functions to describe the sound speed perturbation. 
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4.2    Formulas 

The spectral method for generating an azimuthally-summed 3-D random field 77(7-, z) 

will be presented in this section. For the sake of simplicity, generation of azimuthally- 

summed 2-D random fields will be studied first. In other words, the dimension z 

(corresponding to the vertical direction) is dropped for the time being. However, it 

can be easily added to the formulas later. 

In Cartesian coordinates, the power spectral density W can be obtained by 

1 L/2    rL/2 

^   ■-'. ~     ',. (4-2) L/2J-L/2 1 V       ' 

I    I     rL/2     fL/2 
W(kx,ky)= lim — ( /       /      e(x,y)e-i^x+kyy^dxdy 

L-+00 Ll \ J-L/2 J-L/2 

where kx, ky are the wavenumbers in the x, y directions, L2 is the patch size assuming 

square area, (•) stands for the ensemble average operation and | • | indicates the 

modulus operation. The power spectral density should be normalized such that 

\ roo     roo 

(2TTP /-co J-00 W^'ky^ dkx dky = °2' ^^ 

where a is the standard deviation of the sound speed perturbation. Equation 4.2 can 

be proved to satisfy the relation [72] 

/OO      roo 

/     C(&,&)e-*<*"fr+**>(*&*,,, (4.4) 
-00 J—oo 

where <?(£,., f„) is the correlation function and £x, £y are the lag distances between 

two points in the x and y directions. The consistency between Eq.4.2 and Eq.4.4 

has an important implication. It guarantees that if the power spectral density of 

the generated random field, estimated through Eq.4.2, converges to the desired one, 

the generated random field would have the desired correlation function according to 

Eq.4.4, and therefore the desired second-order statistics. 
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According to Eq.4.2, a random field can be generated by 

e(x, y) = -^ |* 1^ y/Wik^VRnfa, l^e****^ dkx dky. (4.5) 

Here the random number R„, fits the distribution Rn(kx, ky) ~ [N(0, l)+i N(0, l)]/\/2, 

where N(0,1) stands for a Normal distribution with zero mean and standard deviation 

1. In order for e(x, y) to be real, Rn(kx,ky) has to be conjugate symmetric between 

the first and the third quadrants as well as the second and the fourth quadrants. If 

the following coordinate transformation 

T — nr nrtc A\ 

(4.6) 
n 0 y = r sin 0 

is performed, Eq.4.5 will become 

e(r, 0) = j±- Jo°° jT y/wiK^&Rnikr, ey^^o-^kr dkr dB. (4.7) 

The equation for r\{r) will be 

/•2JT 1       too    r2n      /  

/     e(r, <£)#=—/     /     JW(kr,e)L2Rn(kr,e)krJ0(krr)dkTd9. (4.8) 
JO Z7T JO     JO 

kx = kr cos 6 
and  < 

x = r cos (f> 

ky = kr sin 6 y = r sin <$> 

We point out that rj(r) is a nonstationary process. Here A(j> = 27r/N(r) and N(r) is 

the number of scatterers around the circle with radius r. Assuming constant density 

for the scatterers, N(r) will increase proportionally to r. Therefore, the variance of 

T)(r) will decrease accordingly, which makes n{r) a nonstationary process. Collecting 

the items on the right-hand side which depend on 6, it gives 

F(kr) = i- j^ y/wik^ejlßRnikr, 6) dO. (4.9) 

Changing the continuous integral to a discrete sum and using the relation 

^f- = Akx Aky = kr Akr A9   (kr ^ 0), 
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where A(-) represents the sampling interval, Eq.4.9 becomes 

{r)=    S    V        KMr        ^^^ (4-10) 

where 0* = i A9 and M{kT) is the number of samples around a circle of radius kr. 

The value of F at kT = 0 can be arbitrary as long as it is finite because it will be 

multiplied by kr, which is 0 here, in Eq.4.8. F(kr) can be treated as a new random 

variable with mean 0 and variance 

U      krAkr        
(^0)' 

since Rn(kr, 0{) are independent of each other and each has the variance of 1. There- 

fore, F(kr) can be replaced by 

N ti'
W^d°-MK).  M, 

rZf CLKf 

where Rn{kr) ~ JV(0,1). Notice that here Rn(kT) is a real number due to the fact that 

the imaginary parts of Rn(kr, 6) have been cancelled because of the earlier mentioned 

property of conjugate symmetry. Eq.4.8 now becomes 

i=l   \ 

S°'"™{k^m} Rn(kri)kriJ0(krir)Akr. (4.11) 

where kri = i Akr. 

As mentioned above, the right second-order statistics of generated r){r) is guar- 

anteed. From Eq.4.4, the correlation function of e in Cartesian coordinates can be 

written as 

(^(xi,yi)e*(x2,y2)) = 
1 TOO      fOO 

(2^)2 /.oo Loo W^ ky)S
k*^~x^kv^-y^ dkx dky. (4.12) 
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where (*) stands for conjugate operation. If the coordinate systerm is again changed 

to polar coordinates, it will result in 

(e(r1,<f>i)e*(r2,h)) = 

7-^r /    /     W(kr,e)eik"[riCOs(0-'l>l)-r2COs{e-'t>2)]krdkrd9. (4.13) 
(27r)2 JO   JO 

Therefore, the correlation function of rj(r) is 

/•2JT    f2ir 

fo(ri)if(ra)>   =    /     /    {einAxy^^dfadfa 
Jo    Jo 

/•oo r  r2n 

=    I    \l     W(kr,6)d9 krJ0(krri)J0(krr2)dkr.        (4.14) 

It can be seen that rj(r) generated by Eq.4.11 satisfies the above equation.  Let us 

denote 
/•2ir 

Ws= /    W(kr,6)dd, 
Jo 

which can be considered the radial power spectral density. It is instructive to compute 

the spectral estimates Ws from the random realizations of sound speed perturbations 

for comparison with Ws. In continuum notation, we calculate 

ZTTK  I   rLl2 *\ Ws = -jf\J0     w(r)r)(r)rJ0(krr)dr  J, (4.15) 

where w(r) is a real non-negative weighting or window function normalized such that 

2   rL/2 

- /      w2(r) dr = 1. (4.16) 
Li Jo 

The weighting function is chosen to improve the spectral estimation by reducing an 

effect known as spectral leakage. So if the estimated W agrees with the desired Ws, 

the generated r)(r) can be considered satisfactory. This equation will be used later in 

numerical experiments as the criterion to determine the acceptability of the generated 

random field. 
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Eq.4.11 can be easily extended to the generation of a 3-D azimuthally-summed 

random field in cylindrical coordinates: 

oo       oo 

^) = ^£ E Df0
z*w(krm,kZn,e)de 

^n m=0 n=-oo   N krm Akr 

Rn(krm,kZn)krmJ0(krmr)eik^zAkr Akz, (4.17) 

where kTrn = mAkr,kZrt = nAkz and Rn(kr,kz) has to be conjugate symmetric in 

the z direction in order for rj(r, z) to be real. The layer thickness is denoted by D. 

This process can be viewed as passing the random series t](r) generated according 

to Eq.4.11 through a filter in the z direction. As for the power spectral density 

W(kr,kz,6) used in the generation, it can be in any form, including the result of a 

direct measurement in an experiment. 

If the area within a few wavelengths distance from the center is not a concern, 

Eq.4.17 can be evaluated using a Fourier transform instead of a Hankel transform in 

the r direction and a Fourier transform in z direction, which is essentially the same 

as the Fast-Field-Program (FFP) approach introduced by DiNapoli and Deavenport 

[73]. First the Bessel function J0(krr) is expressed in terms of Hankel functions, 

Mkrr) = - H^ikr^ + H^ikrV) (4.18) 

where HJp and H^2) are the zeroth order Hankel functions of the first and second 

kind, respectively. Next, H^\krr) and H^\krr) are replaced by their asymptotic 

forms [74] 

lim  Hil\krr)   =   Jjfle^-V, 
krr-^oo y jckrr 

lim  H$\kTr)   =   .GLc-<<*'p-*>> (4.19) 

108 



to arrive at the following expression, 

Ah    I Ah    °°     °°   r I      7^ 
v(r,z) = ^)j=^i: E[^]]DJO  w(krm,kZn,e)deRn(krm,kZn) 

r2n 
0i(krmr+kZnz) + e^L> JQ 

nW(krm,kZn,e)d9Rn(krm,kzJe-i^r-k^.   (4.20) 

In the model/data comparison presented in Chapter 6, our interest is on medium to 

low grazing angle backscattering. The generated random field close to the center is 

going to be discarded anyway. As a result, Eq.4.20 can be exploited to speed up the 

computation. 

4.3    Numerical Examples 

In this section, azimuthally-summed 2-D random fields are going to be generated. 

These numerical examples will help verify the methodology that is described above. 

The reasons that 2-D random fields instead of 3-D random fields are chosen are due to 

the following considerations: first is simplicity, since it is easier to show the agreement 

of power spectral densities and correlation functions in 2-D cases; second is the fact 

that the azimuthal summation is performed only in a horizontal plane. 

The situations considered will include isotropic and anisotropic random fields. By 

isotropic, it means that the correlation lengths in both the x and y directions are the 

same; by anisotropic, it means that the correlation lengths are different in the x and 

y directions. In both cases, Gaussian correlation functions will be used. However, it 

can be regarded as a general assessment of the methodology. 

The 2-D Gaussian correlation function in Cartesian coordinates is 

<?(£*,&) =*2exP(-i[! + S]), (4.21) 
x y 

where a is the standard deviation, and lx and ly are the correlation lengths in the x 
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and y directions, respectively. The corresponding power spectral density is 

W(kx,ky) = 27ra2Uyexp(- x x +   y y). (4.22) 

4.3.1    Isotropie Case 

In the isotropic case, lx = ly = I. By performing the coordinate transformation from 

Cartesian coordinates to polar coordinates according to Eq.A.3, Eq.A.2 becomes 

1.2/2 
W(kr, 6) = 27raH2 exp(-^p). (4.23) 

/ml 

Since W is independent of 6, Wa{kr) is simply 2nW{kr). The correlation function of 

rj(r) can be obtained as (see Appendix A) 

fa(ri)»f(r2)> = 47rV/0(^) exp(-^l), (4.24) 

where I0 stands for the zeroth order modified Bessel function of the first kind. The 

variance at each range r is 

(V(r)v*(r)) = 47rV/0(^) exp(-^). (4.25) 

It is evident that the variance of 77 depends on r, which proves that r)(r) is a nonsta- 

tionary process. 

Figure 4-1 shows 10 realizations of the generated random sound speed perturba- 

tions after being summed up azimuthally. Here the horizontal correlation lengths lx 

and ly are both 5m. The standard deviation a is chosen to be 1%. There is a decaying 

trend of the magnitude over range, which is the result of decaying variances. 

110 



0.1 

0.05 

■c 
a 
a. 

S-o 
CO 

05- 

-0.1 -'• 

1                     1                     1 1 

Y 1  

/                    : 

1 

20 40 60 
Range (m) 

80 100 120 

Figure 4-1: 10 realizations of azimuthally-summed 2-D random fields with a Gaussian 
correlation function and a = 1%, lx = ly — 5m 
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Figure 4-2: Comparison of radial power spectral density estimate with exact radial 
power spectral density for an ensemble of 100 realizations (isotropic case) 
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Figure 4-3: Comparison of variance estimate with exact variance for an ensemble of 
100 realizations (isotropic case) 

A comparison of radial power spectral density estimate Ws and the exact Ws is 

shown in Fig. 4-2. Here, Ws is obtained with 100 realizations using the same param- 

eters as in Fig.4-1. A Hanning window is chosen to be the weighting function w(r). 

Reasonable convergence of Ws to Ws is observed except at low spectral levels. This 

difference occurs because w(r) still has a small finite value at the endpoints, which is 

a typical spectral leakage effect. 

Fig. 4-3 shows a comparison of the variance estimate of rj(r) and the exact result 

obtained through Eq.A.6. The estimate is obtained by 

NrU 

Var[V(r)] = —— £ V
2(r), (4.26) 

where Nrlz is the number of realizations used in the estimation. Again, 100 realization 

has been used. The agreement between the estimate and the exact result is reason- 

ably good, which shows the feasibility of this method. More ensemble averaging will 

certainly improve the match. 
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Results Obtained by the Far-Field Approximation 
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Figure 4-4: Comparison of radial power spectral density estimate with exact power 
spectral density for an ensemble of 100 realizations using the FFP approach 

Fig. 4-4 is the same as Fig. 4-2 except the random fields are generated by the 

FFP approach described in Eq.4.20. The good fit between the estimated and exact 

Ws indicates the acceptability of this approach. 

4.3.2    Anisotropie Case 

In an anisotropic situation, the coordinate transformation of Eq.A.2 through Eq.A.3 

will give 

W(kr,e) = 2,a%l>eM-k'{llC°^;l'Sin2e\ (4.27) 

As a result, 

Ws{kr) = 47rW0( -.——)e       4 (4.28) 
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Figure 4-5: 10 realizations of azimuthally-summed 2-D random fields with a Gaussian 
correlation function and a — 1%, lx = 2m, ly = 5m 

(See Appendix A for a detailed derivation). The variance of -q{r) is 

Var {T] (r)} = 
r2ir   I-2TT ~.2 

° h   h   exp(~2l2pK(cOS^2~COS^)2 + /'(sin^2_sin^l)2^d^^2-   (429) 

This equation can be evaluated numerically. 

Figure 4-5 shows 10 realizations of the generated random sound speed perturba- 

tions after being summed up azimuthally. Here the horizontal correlation lengths lx 

and ly are 2m and 5m, respectively. The standard deviation a is again 1%. By com- 

paring Fig.4-5 with Fig. 4-1, one can notice that there are more oscillations over the 

range in the previous one. This is because the correlation length lx in this anisotropic 

case is 2m instead of the 5m used in the isotropic case, which means that the corre- 

lation of the original 2-D field before azimuthal summation is not as good as that in 

the isotropic case. This is reflected in the azimuthally-summed field. It will be more 

evident when the radial power spectral densities are compared later. 
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Figure 4-6: Comparison of radial power spectral density estimate with exact radial 
power spectral density for ensemble of 100 realizations (anisotropic case) 

Again, good agreement can be seen between the estimated power spectral density 

Ws and the exact Ws. Ws is obtained with 100 realizations using the same parameters 

as in Fig.4-5. A Hanning window is chosen to be the weighting function w(r). In this 

particular case, the difference at low spectral level due to spectral leakage cannot be 

observed since it is out of the plotted wavenumber region. The match between the 

estimated variance of rj(r) and the exact one obtained through numerical evaluation 

of Eq. A.8 is good as well. 

Next we compare the radial power spectral density Ws for random fields with 

different correlation lengths lx. It can be seen in Fig. 4-8 that the decay rate of power 

spectral density versus wavenumber is inversely proportional to the correlation length 

lx when ly is equal. The larger the lx, the better the correlation of the original field, the 

larger the decay rate. From the perspective of spatial-wavenumber relationship, there 

will be more energy at high wavenumber for poorer correlation, which corresponds to 

higher oscillation in spatial domain as can be seen in Fig. 4-5 compared to that in 

Fig. 4-1. 
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Figure 4-7: Comparison of variance estimate with exact variance for an ensemble of 
100 realizations (anisotropic case) 
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Figure 4-8: Comparison of radial power spectral densities for random fields with the 
same correlation length ly but different correlation length lx. The estimated radial 
spectral densities are obtained by an ensemble average of 100 realizations 
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4.4    Summary 

The purpose of generating azimuthally-summed random fields is to reduce the compu- 

tational load of studying monostatic backscattering from 3-D random inhomogeneities 

by transforming a 3-D problem to a 2-D problem if the source and receiver are co- 

located. The numerical examples given in the previous section prove that the proposed 

approach is successful, which will facilitate the synthesis of backscattering time series 

in the next chapter. 
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Chapter 5 

Numerical Simulations of 

Backscattered Time Series 

One of the objectives of this thesis work is to enable the simulation of the backscat- 

tered field and backscattering time series due to three-dimensional volume inhomo- 

geneities in the sediment. In Chapter 3, a small perturbation approach was employed 

to derive the formulations for bottom scattering from sound speed and density varia- 

tions. In Chapter 4, a scheme was proposed to generate azimuthally-summed three- 

dimensional random fields using the spectral method. With the calculation of the 

Green's function discussed in Chapter 2 handled by OASES and sound speed and 

density variations generated by the above-mentioned spectral method, we are pre- 

pared to simulate monostatic backscattered fields and backscattering time series at 

the receiver. 

In this chapter, we will describe procedures for generating backscattering time 

series first. Then the emphasis will be put on comparisons between numerical simu- 

lation and analytic solutions. The effect of density variations on backscattering will 

be studied at the end. 
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5.1    Numerical Simulations 

The keys to the numerical simulation of scattered fields and the scattering time series 

rest on the following equations (cf. Eq.3.14) 

P.{Rr) = I e(r')[(2 + ß)k2
0(z')Po(r')G(Rr, r') - ß(WP0(r') ■ VG(Rr, r'))]dr', 

Jv 

where Rr stands for the receiver position and r' stands for the scatterer position. The 

scattering time series y(t) can be obtained by (cf. Eq.3.16) 

1    f°° 
y(t) = TT       P,(Rr,w)S(w)exp(twt)dw, 

Z7T J-oo 

where u is the radial frequency and S(u) is the spectrum of the source signal. The 

numerical procedures for these are self-evident, i.e., 

• Calculate the Green's function G and the mean field PQ. For simple cases 

such as a free-space scenario, analytic solutions are available, while for more 

complicated environments, some numerical toolboxes {e.g., OASES and Kraken 

[75]) can be exploited. OASES is our choice in this work. 

• Generate azimuthally-summed 3-D random sound speed variations using the 

spectral method described in Chapter 4. For monostatic backscattering, ex- 

cept for e, all the terms on the RHS of Eq.3.14 are independent of azimuth 

in a cylindrical coordinate. As a result, we can take advantage of having an 

azimuthally-summed random field instead of a full 3-D random field because of 

the difficulty of meeting the computational requirement for the generation of 

the latter. 

• Obtain the monostatic backscattered field using Eq.3.14. If the ultimate goal 

is to simulate a backscattering time series, scattered fields for many frequencies 

have to be calculated. Subsequently, G and P0 have to be computed for mul- 

tiple frequencies. Meanwhile, random sound speed variations need only to be 

generated once because they are frequency-independent. 
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Figure 5-1: The source signal and its spectrum. 

• Produce backscattering time series by Fourier synthesis of the scattered field in 

the full frequency spectrum. 

Next we present an example of a simulated backscattering time series at one 

receiver. We will utilize the same free-space scenario as shown in Fig. 3-4. The back- 

ground sound speed is chosen to be 1500m/s, the density lg/cm3, the source/receiver 

height 400m and there is no attenuation. Figure 5-1 depicts the source signal that 

is going to be used in the simulation throughout this chapter and its spectrum. It is 

a Hanning-windowed 400Hz CW wave with a pulse duration of 0.1s. The sampling 

frequency is 2000Hz. 

Assuming exponential correlation functions horizontally and vertically for a 7.5m 

(2 wavelength) thick random layer with the horizontal correlation length lx = ly = 2m 
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Figure 5-2: Simulated backscattered returns from an inhomogeneous layer. The cor- 
relation function of random sound speed variations within the layer are exponential 
both horizontally and vertically. 

and vertical correlation length lz = 0.5m, we can simulate backscattered returns 

recorded at the receiver as shown in Fig. 5-2. The single source/single receiver config- 

uration is exploited and it is the setup for the rest of the chapter. The source/receiver 

height is fixed at 400m from now on. Only sound speed variations will be modeled 

for the time being and the effect of density fluctuations will be examined in the last 

section of this chapter. Since the concentration of this thesis work is on mid- to 

low- grazing angle backscattering, we have tapered the random field close to normal 

incidence with half of a Hanning window. This causes an increasing amplitude at 

the beginning of the time series. The amplitude is then decaying with travel time 

increasing because of the spreading loss. 

Simply by observing the simulated time series, it is almost impossible to tell if the 

numerical result is valid. Therefore, we have to find a way to prove that the generated 

backscattered returns make sense, which will be the task of the next section. 
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5.2    Comparisons with Analytic Solutions in the 

Free-Space Scenario 

With the quantum leap in the computational ability in recent years, numerical for- 

ward modeling has gained more and more popularity. However, there is always a 

question for this type of approach: how do we verify the numerical results? Usually 

there are two ways to check: the first and ideal scenario is to make comparisons of 

numerical results with appropriate analytic solutions, pending the availability of such 

analytic solutions; the second is to check if the model under development agrees with 

other numerical models or benchmark solutions, which is a legitimate verification ex- 

cept for some extreme cases. In the case that both of the above approaches cannot 

be carried out, the last but less convincing approach is to see if the numerical results 

make sense physically in solving some well-understood problems. Fortunately for this 

work, we have analytic solutions for monostatic backscattering from volumetric het- 

erogeneities in the free-space case, which makes our life much easier. Formulations 

for such analytic solutions are given in Chapter 3. Subsequently, analytic results will 

be presented in this chapter without being reiterated in detail. 

As we know in numerical modeling, one common practice is to discretize the con- 

tinuous field, i.e., sampling. The final results would normally vary with the sampling 

rate unless adequate sampling of the field has been achieved. Therefore, it is criti- 

cal to find out the sufficient sampling rate, thereby reaching a unique solution. An 

effective and widely used procedure is the convergence test. The idea is to increase 

the sampling rate until the end result approaches a constant value,i.e., converges. 

The lowest sampling rate for the result to reach the constant value is designated 

the sufficient sampling rate. Theoretically, convergence tests need to be performed 

for every problem. Figure 5-3 shows an example of a convergence test. The ensem- 

ble averages of backscattering intensity versus time are plotted for 50 realizations. 

Backscattering intensity here is defined as the square of the envelope of the backscat- 

tered returns.  Meanwhile, from a statistics point of view, a single realization is not 
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Figure 5-3: The convergence test for backscattering from 2-D sound speed variations 
with a power law distribution (lx = ly = Ira). 

sufficient to determine a statistical process. Consequently, ensemble averaging will 

instead be studied for the rest of the chapter. The result shown in Fig. 5-3 is for 

backscattering from 2-D sound speed variations with a power law distribution. The 

horizontal correlation lengths lx and ly are Ira, respectively. The standard deviation 

of sound speed variations o is 5%. From the figure, it can be seen that sampling 

interval of 1/8 wavelength, i.e., a sampling rate of 8k where k is the wavenumber, 

is sufficient for the backscattering intensity to converge. Of course, the sufficient 

sampling rate will largely depend on what type of correlation function we have for 

the random field, or more specifically, the roll-off rate of the power spectrum ver- 

sus wavenumber. Convergence tests have been done for Gaussian and exponential 

distributions as well, and the sampling interval of 1/8 wavelength horizontally has 

been found to be adequate, although results are not shown here for the sake of brevity. 

As mentioned in Chapters 2 and 3, for surface scattering or volume scattering from 

a thin layer, the quantity of scattering strength versus grazing angle can be used to 

characterize the scattering process. There is no angular ambiguity in this case even 

123 



for a single source/single receiver configuration because the arrival time can be easily 

related to the scattering angle. The equation for the calculation of the backscattering 

strength is as follows 

555 = 101og10^, (5.1) 
■Lin**- 

where Is is the intensity of backscattered signals at the receiver, Iin is the intensity 

of the incident sound wave a unit distance away from the scattering area, R is the 

distance from the source to the scatterer, and A is the insonified area [52]. Following 

the same procedure as in Ref. [10], we have 

A = TTCTR, (5.2) 

where c is the sound speed and r is the pulse duration. At the same time, Is and Iin 

can be estimated respectively by 

Is = lft
t+Ty2(T)dT, (5.3) 

where y{T) is the scattered return at the receiver and t is the round trip travel time 

from the source/receiver to the scatterers and 

1   /•«o+r   o 
Iin = ~ S2(t) dt, (5.4) 

where S(t) is the source signal. We will estimate the backscattering strength from 

the simulated backscattered returns and compare the results with analytic solutions 

obtained in Chapter 3. 

We will categorize the comparisons into the 2-D isotropic case, the 2-D anisotropic 

case and the 3-D vertically correlated case. 
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Figure 5-4: Backscattering from 2-D isotropic sound speed variations with a Gaussian 
correlation function, averaging over 50 realizations (/ = 400Hz, H = 400m, lx = ly = 
lm, CT = 0.05) 

5.2.1    2-D Isotropic Case 

First we will present an example of backscattering from random sound speed varia- 

tions possessing a 2-D isotropic Gaussian correlation function. Figure 5-4 shows the 

ensemble average over 50 realizations of simulated backscattering intensities at one 

receiver. The source/receiver height is 400m. The frequency is 400Hz. The horizon- 

tal correlation lengths lx and ly are chosen to be lm, respectively, and the standard 

deviation a is 5%. The backscattering strength versus grazing angle can be estimated 

following the procedure presented in the beginning of this section. The comparison 

with the analytic solution can be seen in Fig. 5-5, in which the error bars show the 

standard deviation of the estimate. To our delight, the numerical solution and the 

analytic solution match very well. 

Second is an example of backscattering from random sound speed variations with 

a 2-D isotropic exponential correlation function. Figure 5-6 shows the ensemble av- 

erage over 50 realizations of simulated backscattering intensities at one receiver. All 
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Figure 5-5: Comparison of the backscattering strength estimated from the numerically 
simulated backscattered returns with the analytic solution. Sound speed variations 
have a Gaussian correlation function. (/ = 400Hz, H = 400m, lx = I' = lm, a = 
0.05) 
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Figure 5-6: Backscattering from 2-D isotropic sound speed variations with an ex- 
ponential correlation function, averaging over 50 realizations (/ = 400Hz, H = 
400m, lx = ly = 0.84m, a = 0.05) 
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Figure 5-7: Comparison of the backscattering strength estimated from the numeri- 
cally simulated backscattered returns with the analytic solution. Sound speed vari- 
ations have an exponential correlation function. (/ = 400Hz,H = 400m, lx = ly = 
0.84m, a = 0.05) 

the parameters are the same as in the Gaussian correlation case except that the cor- 

relation lengths lx and ly are arbitrarily chosen to be 0.84m, respectively. Again, the 

backscattering strength versus grazing angle is estimated and the comparison with 

the analytic solution is plotted in Fig. 5-7. The matches between the two are excellent. 

Third is an example of backscattering from random sound speed variations with 

a 2-D isotropic power law distribution. Figure 5-8 depicts the ensemble average over 

50 realizations of simulated backscattering intensities at one receiver. All the param- 

eters are the same as in the Gaussian correlation case and the horizontal correlation 

lengths are once again lm in both x and y directions. The order v in the Von Karman 

function is chosen to be 1 so that the fractal dimension is 2. This is the case for the 

anisotropic case in the next subsection as well. Figure 5-9 shows the comparison of 

the estimated backscattering strength with the analytic solution. The results again 

are excellent. 
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Figure 5-8: Backscattering from 2-D isotropic sound speed variations with a power 
law distribution, averaging over 50 realizations (/ = 400-0^, H = 400m, lx = ly = 
lm, a = 0.05, i/= 1) 
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Figure 5-9: Comparison of the backscattering strength estimated from the numerical 
simulated backscattering returns with the analytic solution. Sound speed variations 
have a power law distribution. (/ = 400-ffz, H = 400m,lx = ly = lm,a = 0.05, v = 
1) 
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Figure 5-10: Backscattering from 2-D anisotropic sound speed variations with a 
Gaussian distribution, averaging over 50 realizations ( / = 400-H^, H = 400m, lx = 
lm, ly = 0.6m, a = 0.05) 

5.2.2    2-D Anisotropic Case 

The numerical model will be tested for 2-D anisotropic cases in this subsection. Again 

we will present examples for three different types of correlation functions. 

Figure 5-10 demonstrates the anisotropic Gaussian case. The plotted backscat- 

tering intensity is the ensemble average of 50 realizations. All the parameters are 

the same as in the isotropic Gaussian case except that the correlation length in the 

y direction ly has been changed to 0.6m. The comparison between numerical solu- 

tions and analytic solutions is shown in Fig. 5-11. For an anisotropic exponential 

distribution, the backscattering intensity versus arrival time is depicted in Fig. 5-12. 

The comparison of estimated backscattering strength with the analytic solution can 

be seen in Fig. 5-13. Except that the horizontal correlation length ly is changed 

to 2m, all other parameters are the same as in the isotropic Gaussian case. For an 

anisotropic power law distribution with correlation length lx = lm, ly = 0.6m, and 

v = 1, Fig.  5-14 shows the backscattering intensity and Fig.  5-15 the comparison 
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Figure 5-11: Comparison of the backscattering strength estimated from the numeri- 
cally simulated backscattered returns with the analytic solution. Sound speed varia- 
tions have a Gaussian distribution. (/ = 400Hz, H = 400m, lx = lm, L = 0 6m a = 
0.05) 
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Figure 5-12: Backscattering from 2-D anisotropic sound speed variations with an 
exponential distribution, averaging over 50 realizations (/ = 400Hz, H = 400m, lx = 
lm, ly = 2m, a = 0.05) 
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Figure 5-13: Comparison of the backscattering strength estimated from the numerical 
simulated backscattering returns with the analytic solution. Sound speed variations 
have an exponential distribution. (/ = 400Hz,H = 400m,lx = lm,ly = 2m, a = 
0.05) 

with analytic solutions. It is evident that matches between the numerical results 

and the analytic solutions are excellent for all three of the above anisotropic cases. 

For the sake of brevity, we give comparison of the backscattering strength versus 

grazing angle only for one set of parameters in each distribution. However, we have 

no doubt that the curves in Figs. 3-9, 3-10 and 3-11 can be reproduced by numerical 

simulation. Since the decay rate of the backscattering strength versus grazing angle 

is directly related to the decay rate of backscattering intensity versus time, we expect 

the backscattering intensity to have different decay rates versus time for different 

values of the parameters in the above three figures. Figure 5-16 gives one example in 

the Gaussian distribution case. 

Through comparisons with analytic solutions in 2-D isotropic and anisotropic sit- 

uations, the monostatic backscattering model has been proved to be successful in 

simulating backscattered returns resulting from 2-D random sound speed variations. 
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Figure 5-14: Backscattering from 2-D anisotropic sound speed variations with a power 
law type of distribution, averaging over 50 realizations (/ = 400Hz, H = 400m, lx = 
lm, ly = 0.6m, a = 0.05, v = 1) 

-20 

-30 

B-35 
c 
£ 
m 
ra-40 

-45 

-50 

-55- 

-60 

a= 0.05, lx=1m, ly=0.6m, f=400Hz, H=400m 

—'- Exact result 
• - ■- Simulation result   j 

20 25 30 35 40 45 
Grazing angle(degrees) 

50 55 60 

Figure 5-15: Comparison of the backscattering strength estimated from the numeri- 
cally simulated backscattered returns with the analytic solution. Sound speed varia- 
tions have a power law distribution. (/ = 400Hz, H = 400m, lx = Im, L = 0.6m, a = 
0.05, i/ = l) 
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Figure 5-16: Backscattering intensities for simulated backscattered returns due to 
sound speed variations with a Gaussian distribution, averaging over 50 realizations 
(/ = 400Hz, H = 400m, a = 0.05). 
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The good fit between the numerical results and analytic solutions also implies that 

the 1/8 wavelength sampling interval is sufficient for all the above distributions. 

5.2.3    3-D Vertically Correlated Case 

Three-dimensional volume scattering with vertical correlation is more complicated 

than the above 2-D cases. On the one hand, the existence of physical boundaries, 

i.e., the layer interfaces, violates the stationarity assumption of the random field, 

which causes the edge effect that does not arise in the numerical solution. On the 

other hand, arrival time can no longer be translated into scattering angle accurately. 

Returns from scatterers located at different depths can have the same arrival time, 

which brings in angular ambiguities for the estimated backscattering strength in a 

single source/single receiver configuration. 

In this section, our focus is on thin scattering layers. As long as the layer thickness 

is small, the single source/single receiver configuration is still capable of providing a 

good estimate of the backscattering strength versus grazing angle. However, in Chap- 

ter 2, an assumption is made in obtaining the analytic solution that the dimension of 

the scattering volume be much larger than the correlation length. This would conflict 

with the small layer thickness requirement above. A compromise has to be reached 

in choosing the layer thickness. 

Again, we need a convergence test to determine the sufficient sampling rate in 

the vertical direction. In Fig. 5-17, we choose a 7.5m thick random layer with expo- 

nential correlation function horizontally and vertically. The correlation lengths are 

lx = ly = 2m and lz = 0.5m. The frequency is 400Hz and the source/receiver height 

is 400m. It can been seen that the curve with 1/10 wavelength as sampling interval 

in the z direction is very close to that with 1/20 wavelength. Disregarding the be- 

ginning part which corresponds to high grazing angles, there are only up to 0.3dB 

discrepancies along the curve which can be considered acceptable.  Therefore, 1/10 
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Figure 5-17: The convergence test for backscattering from 3-D random sound speed 
variations with exponential distributions horizontally and vertically (a = 0.05, lx = 
ly = 2m, lz = 0.5m, / = 400#z, H = 400m, D = 7.5m) 

wavelength is regarded as a sufficient sampling interval in the vertical direction. 

Following the same procedure as in the 2-D cases, the backscattering strength 

can be estimated from simulated backscattered returns. The comparison with the 

analytic solution is shown in Fig. 5-18. The match between the two curves is not 

as good as that in the 2-D cases. However, except for regions close to 55 degree 

grazing angle, where the difference is about 2dB, the two curves are close to each 

other. Bear in mind that the analytic solution is obtained under the assumption that 

the dimension of the scattering volume is much larger than the correlation length so 

that the boundary effect can be ignored, while the numerical solution does include 

the boundary effect. That could well be the reason why such disagreement exists. 

Anyway, the fit can be regarded as satisfactory since the numerical solution predicts 

the trend of the backscattering strength versus grazing angle reasonably well and the 

level closely. 

In conclusion, the numerical solution obtained from the monostatic backscattering 
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Figure 5-18: Comparison of the estimated backscattering strength from numerically 
simulated backscattered returns with the analytic solution. Sound speed variations 
are exponentially correlated horizontally and vertically, (a = 0.05, lx = ly = 2m, lz = 
0.5m, / = 400Hz, H = 400m, D = 7.5m) 

model has been found to be in good agreement with the analytic solution. It gives us 

confidence that numerical errors are under control and the model prediction is valid, 

which sets the stage for the model/data comparison in the next chapter. 

5.3    The Effect of Density Variations 

As pointed out in Chapter 3, the density variations act like a dipole source with 

its major axis in the backscattering direction. Therefore, we would expect total 

backscattering to be enhanced. To confirm this, the following procedures are to be 

taken: First, backscattering returns from 2-D random sound speed variations only 

will be simulated. Sound speed variations are assigned a power law distribution with 

correlation lengths lx = ly = lm. The standard deviation is 5%. The frequency is 

400Hz and the source/receiver height is 400m. The backscattering intensity can then 

be obtained and the backscattering strength estimated. Next, we add density varia- 
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Figure 5-19: Backscattering intensities for simulated backscattered returns due to 
2-D random sound speed variations only (dash-dotted line) and density variations 
only (dash line) and both (solid line). Sound speed variations have a power law distri- 
bution, (a = 0.05, lx = ly = lm,ß = 2,f = 400Hz, H = 400m) 

tions to the picture. The ratio between density variations and sound speed variations, 

i.e., ß is chosen to be 2 according to Hines' empirical results [14]. The backscattering 

intensity is recalculated and the backscattering strength again estimated. 

Backscattering intensities with sound speed variations only, with density varia- 

tions only and with both variations are plotted together in Fig. 5-19 and the cor- 

responding backscattering strengths in Fig. 5-20. The backscattering strength with 

density variations only is 7dB higher than that with sound speed variations only, 

which shows that density variations are the more dominant contributors to backscat- 

tering. An interesting phenomenon is that the two curves are parallel to each other. In 

other words, the angular dependence of the backscattering strength has not changed 

with the addition of density variations. One possible explanation is that the major 

axis of the virtual dipole-like source caused by density variations always lies in the 

backscattering direction. While density variations and sound speed variations are 

fully correlated in the meantime, the dipole-like source will behave the same as the 

monopole-like source caused by sound speed variations in the backscattered direction. 
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Figure 5-20: Backscattering strengths for simulated backscattered returns due to 
2-D random sound speed variations only(dash-dotted line) and density variations 
only (dash line) and both(solid line). Sound speed variations have a power law distri- 
bution, (a = 0.05, lx = ly = lm,ß = 2,f = 400Hz, H = 400m) 

All in all, the above examples have clearly demonstrated the importance of in- 

cluding density variations in backscattering modeling. Since density variations will 

change only the level but not the angular dependence of the backscattering strength, 

the conclusions that we have reached through the study of sound speed variations 

only will still be valid. 
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Chapter 6 

Comparison of Model Results and 

ARSRP Backscattering Data 

A primary goal of this work is to develop a volume backscattering model that can 

account for the backscattering phenomena observed in the ARSRP sediment experi- 

ment. Throughout Chapter 2, 3, and 4, the accumulating efforts have clearly paved 

the way for the realization of a backscattering model, which is capable of incorporat- 

ing contributions due to both sound speed and density variations. In the meanwhile, 

by comparing to analytic solutions in free-space scenarios, the reliability of the model 

has been demonstrated in the previous chapter. Nevertheless, a more important but 

challenging task is to evaluate the capability of the model in predicting the experi- 

mental results, which is the concentration of this chapter. 

As discussed earlier, an ideal and straightforward way to compare the model and 

backscattering data due to volume scattering from a thick layer of sediment inhomo- 

geneities is through the scattering time series. However, in the ARSRP experiment 

scenario, the wide bandwidth of the source signal, 400Hz, together with the large 

layer thickness, 20 — 30m (has to be sampled at every l/10th wavelength vertically 

in order to guarantee convergence) make the simulation of the scattering time series 

extremely computationally intensive. It would be unrealistic in this situation to run 

the model many times so as to achieve a good fit with the data.  Therefore, an al- 
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ternative scheme for comparison is chosen, which is to compare the backscattering 

strength versus grazing angle between model and data for selected frequencies across 

the band. One might recall that the single source/single receiver configuration cannot 

distinguish scattered returns from different directions but with the same arrival time, 

thereby resulting in angular ambiguities of the backscattering strength. Fortunately 

for us, this drawback can be overcome thanks to the vertical line array and beam- 

forming technique. Besides, as long as the model and data are processed by the same 

means, the results of comparisons will not be affected. 

This chapter begins by reviewing the experimental setup. All the information 

about the backscattering data collection is provided in the first section. The ARSRP 

data processing will then be briefly discussed in the second section. In the third 

section, the focus will be on the estimation of the backscattering strength from the 

beamformed backscattered returns. Details will also be given on how to choose the 

model parameters since they are closely related to the above estimation. The com- 

parison between model results and the ARSRP backscattering data is the theme of 

the final section. 

6.1    Experiment Description 

On July 24-26,1993, as part of the Acoustic Reverberation Special Research Program 

(ARSRP), a bottom backscattering experiment was conducted over the site A sedi- 

ment pond located at 26°11'N, 46°09'W in the vicinity of the Mid-Atlantic Ridge [76]. 

The water depth was about 4400 meters for most of the sediment pond area and 

the sound speed profile was a typical linear deep ocean profile obtained from XBT 

measurements. The gradient was 0.0154/s for the water column close to the seafloor. 

The sound speed at the water-sediment interface was extrapolated to be 1530 m/s. 
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The oval-shaped sediment pond was approximately 15 km x 20 km in size. The 

thickness of the sediment cover varied from almost no cover at the edge of the pond 

to about 430 meters in the middle of the pond. For areas where the backscattered 

data were collected, the sediment was at least 100 m thick. The top layer beneath the 

water-sediment interface was made of calcareous mud with a sound speed of 1510 m/s 

according to core data [77]. No direct measurements of the attenuation coefficient or 

the sound speed gradient were available in the sediment area where the experiment 

was conducted. A deep towed high-frequency chirp sonar and in situ optical survey 

revealed that the seafloor was virtually flat with rms roughness less than 10 cm [78]. 

A rough basalt basement was beneath the sediment layer. 

Figure 6-1 shows the bathymetry of the sediment pond and the ship track along 

which the experiment was carried out. For the results presented in this chapter, we 

will only analyze the data collected along the straight line shown in the figure. Fig- 

ure 6-2 depicts the experimental scenario. The acoustic system was deployed at the 

west side of the pond and recovered in the middle after being towed across the entire 

sediment pond. 

The acoustic source used in the experiment is part of the Deep Towed Acous- 

tics/Geophysics System (DTAGS) and was developed by the Naval Research Labo- 

ratory - Stennis Space Center[79]. The source signal is a linear frequency-modulated 

(LFM) upchirp signal in the frequency range 250-650 Hz. The designed source level is 

200 dB re 1//Pa @ 1 m. The duration of the source signal is 0.125 s. The receiver is a 

24 element vertical line array(VLA) hung beneath the source, with a spacing between 

adjacent hydrophone elements of 2 m. The cable connecting the source and the top 

hydrophone is 57.5 m long. A weight is attached to the end of the array to keep 

it close to a vertical configuration. Figure 6-3 shows the geometry of the acoustic 

transmitting and receiving system. The source signal is transmitted once every 32 

s. For each ping, the hydrophones record 4.5 s of waveforms starting 0.1 s before 

the source trigger.  The sampling interval is 0.432 ms.  More than 5000 pings were 
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Figure 6-1: Bathymetry and ship track in the ARSRP Site A sediment pond. 
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Figure 6-3: The DTAGS source and receiving array geometry. 

transmitted throughout the experiment. Figure 6-4 shows the received signal and its 

spectrum at one hydrophone for one ping. 

During the experiment, the DTAGS source was towed at a depth of about 200- 

400 meters above the seafloor, while the ship used the high-resolution (P-code) GPS 

dynamic positioning to maintain a constant speed over ground (SOG) of 0.5 knot, 

with several stops to ensure that the array returned to nearly vertical alignment. The 

actual array shape is estimated by using the direct and bottom reflected arrival times 

on each hydrophone. The details of the array element localization method was given 

in [10]. Figure 6-5 shows the estimated array configuration for one location. It can 

be noticed that the array is roughly vertical. Generally it is found that the array tilt 

angle is within 5 degrees of vertical. 
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Figure 6-4:  (a) The received signal and (b) its spectrum at one hydrophone for a 
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Figure 6-5: The estimated receiving array configuration for a typical ping 
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6.2    Data Processing 

Only a short version of the data processing techniques will be presented here since 

details have been given in Ref. [10]. The emphasis of this section is on estimating 

the backscattering strength versus grazing angle from the data. 

The sediment is well-known for its layered structure, which is further confirmed 

by bottom profiling shown in Figs. 1-1 and 1-3 in the experimental region. It is evi- 

dent from the plot that strong coherent reflections exist at layer interfaces. With the 

sediment thickness ranging from 100m to 400m, the reflections from deep layers can 

arrive at the same time as backscattered returns in oblique directions. As a result, 

the usual time-gating technique are no longer valid in separating the reflected and 

backscattered returns. In other words, the assumption that scattering arrivals at a 

certain time are associated with only one scattering angle are not valid. This can 

explain why the angular dependence of the backscattering strength obtained from a 

single source/single receiver configuration is error-prone. 

The aforementioned problem had been recognized in the design of the ARSRP 

backscattering experiment and a vertical line array instead of a single hydrophone 

was used as the receiver. With the beamforming technique, scattered returns in the 

look direction can be obtained without distortion, while all the returns in other di- 

rections have been attenuated. The beam pattern for a conventional single-constraint 

beamformer is shown in Fig. 6-6. The array here has the same geometry as the actual 

receiving array depicted in Fig. 6-3, i.e., a 24 element vertical line array with 2m 

spacing between hydrophones. The frequency is chosen to be the center frequency of 

the source signal, 450Hz and the look direction is -45 degrees. The array response 

for each circle is 2MB higher than that of the neighboring inner circle. The grating 

lobes in the upper part of the plot are caused by undersampling. From the plot- 

ted beam pattern, as expected, one can see that no attenuation is imposed on signals 

coming from the look direction. However, in sediment volume scattering, the coherent 
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Hz, look direction = —45 degrees. 
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reflections in the normal and near normal incidence directions are much stronger than 

the backscattered returns in oblique directions, which had been observed in ARSRP 

backscattering experiment. Therefore, there was a great possibility that the above 

shown sidelobe levels in the normal and near normal incidence directions were not 

low enough to reject those unwanted returns. The ineffectiveness of the conventional 

beamformer had been confirmed by simulations [10]. To overcome this, a multiple- 

constraints beamformer was developed [10] and its beampattern for the same setup as 

in the above conventional single-constraint beamformer is shown in Fig. 6-7. A null 

is formed in the normal and near normal incidence directions, thereby improve the 

beamformer's ability of alleviating the strong reflections. Simulations in Ref. [10] saw 

much more favorable results compared to those with conventional single-constraint 

beamforming. 
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To further reduce the normal-incidence returns, a hybrid method, which com- 

bines multiple constraints beamforming and a subtraction procedure, was applied in 

the ARSRP data processing. The idea is to subtract first the strong returns from 

the normal and near normal incidence directions obtained from endfire beamforming, 

then apply multiple constraints beamforming to estimate the backscattered returns 

in oblique directions. Bear in mind that it is case-dependent for the subtraction pro- 

cedure to work and it is almost impossible to subtract all the returns in the normal 

and near normal incidence directions for experimental data. However, the subtrac- 

tion proved to be successful for the ARSRP backscattering data, since most of the 

high amplitude peaks due to reflections disappeared after the subtraction (cf. Fig. 

3-11 [10]). The multiple constraints beamformer will help to reject the residue of the 

subtraction, which is also in the normal and near normal incidence directions, and 

obtain the uncontaminated backscattered returns in oblique directions. This led to 

the findings stated in Chapter 1 that two irregular layers beneath the water/sediment 

interface are the primary contributors to backscattering in oblique directions. 

6.3    Selection of Model Parameters and Estimation 

of the Backscattering Strength 

Since the scattering layers are beneath the seafloor, the selection of background pa- 

rameters for the model such as the sound speed profile and attenuation coefficient 

would directly affect the estimation of the backscattering strength, which prompts us 

to address these two together in this section. 

The extrapolation of the CTD measurement revealed that the water sound speed 

at the top of the water/sediment interface is 1530m/s. According to Fu et. al. [77], 

the sound speed just beneath the interface is 1510m/s, slightly lower than that in 

the water column. Using a ray-tracing type of estimation of the sediment/basement 
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Figure 6-8: Fluid bottom reverberation scenario. 

interface returns, the average sound speed gradient in the sediment is found to be 

approximately 1.12/s [9]. According to Hamilton [62], a typical gradient for this type 

of sediment is about 1/s. From the amplitudes of the normal-incidence reflections at 

the water/sediment interface and the sediment/basement interface together with the 

arrival time, the attenuation is approximately estimated as O.ldB/X, which is consis- 

tent with values in the literature [59, 32] for the calcareous mud type of sediment in 

this area. The density of the sediment is chosen to be 1500%/ra3, also well within 

the range for this type of sediment. By incorporating all the above parameters, we 

propose a simple fluid bottom model depicted in Fig. 6-8. The sound speed is as- 

sumed to be linear from the water/sediment interface down to 100m. The interface at 

100m beneath the water/sediment interface is a false one, as is the isovelocity bottom 

beneath it. As a result, the specular reflections at the sediment/basement interface 

and their possible insonification of the two irregular scattering layers are neglected 

because they would arrive later than backscattered returns at 30 degree grazing angle, 
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which is the smallest angle at which backscattered returns can still be distinguished 

from the background noise (cf. Fig. 1-2). The positions of the two irregular layers 

can be determined from the travel time obtained from bottom profiling shown in Fig. 

1-1 together with the above proposed sound speed profile. A simple calculation indi- 

cates that the the first irregular layer is located from Hi = 15.85m to H2 — 31.42m 

beneath the water/sediment interface, while the second one is from H3 = 56.42m 

to Hi = 85.7m. Notice that these numbers are different from those marked on the 

side of the bottom profiling plot because a nominal sound speed of 1530m/s was used 

then. The water/sediment interface was found to be flat as mentioned in the previous 

section and verified by the data analysis in [10, 13], which vindicates the choice of a 

range-independent water/sediment interface with no roughness in the model. All the 

above parameters will be the input to OASES so that the Green's function can be 

evaluated. 

To characterize the backscattering process quantitatively, we still resort to estima- 

tions of the backscattering strength. As you can recall in Chapter 2, we had discussed 

the need to be cautious in using the backscattering strength to describe a volume 

scattering process. This quantity might be inappropriate when multi-path effects are 

significant. However, the following reasons make us believe that the backscattering 

strength versus grazing angle is an acceptable parameter in describing backscattering 

from the two irregular layers found in the ARSRP experiment: First, thanks to the 

vertical line array and beamforming, we can discriminate the oblique backscattered 

returns from reflections at layer interfaces, which makes the angular dependence of 

the estimated backscattering strength trustworthy; second, the multi-path effect is 

not significant because of a lower sound speed at the top of the sediment compared 

to that in the water right above it and because of the small sound speed gradient 

in the bottom; in addition, we are only interested in the angular regime between 30 

to 60 degrees grazing angles, where the sediment/basement reflections arrive late as 

discussed before. 
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The estimation of the backscattering strength from data is no simple task. Al- 

though the procedures were described in Ref. [10] and reiterated in Chapter 5, we 

would like to give more details, particularly on how to arrive at the frequency depen- 

dence of the backscattering strength. Let's start from Eq.5.1 

BSS = 10 log10 ^, 

where Is is the intensity of the backscattered signals at the reference receiver, Iin is the 

intensity of the incident sound wave a unit distance away from the scattering volume, 

R is the distance from the reference receiver to the top of the scattering volume, and 

A is the top area of the scattering volume. A reference receiver is needed because we 

now have a vertical line array instead of a single receiver. In this data analysis, the 

middle hydrophone of the array (the twelfth from the top) is chosen as the reference 

receiver. Also, the directivity aspect of the array and subsequent beamforming makes 

it difficult to determine the insonified area precisely. Here, we just consider the simple 

case where the returns are from the maximum response axis(MRA) of the array, i.e., 

the returned signals suffer little attenuation passing through the beamformer. As a 

result, A is estimated by the SdB area corresponding to the annulus where the array 

response is within SdB compared to the MRA. By applying ray tracing, A can be 

calculated by 

A = ir(rl - rf), (6.1) 

where r\ and r2 are the horizontal ranges between the reference receiver and the 

radial bounds of the SdB area(annulus) at the top of the scattering layer, as shown 

in Fig. 6-9. Bear in mind that the 3dB beamwidth 03dB and therefore the SdB 

insonified area will change with frequency. The lower the frequency, the wider the 

beam, the larger the insonified area. In order to get the backscattering strength 

for each frequency, we need to estimate 7tn(/) and Is(f), where / stands for the 

frequency. To calculate /{„(/), the source signal is first Fourier transformed. The 

amplitude squared of the source spectrum is then multiplied by R2 to compensate 
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Figure 6-9: Schematic illustration of the scattering strength estimation. 
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for the spreading loss. Meanwhile, the calculation of Is(f) would involve one more 

procedure, which is to determine the exact piece of beamformed data at each angle 

that corresponds to the backscattered returns from each scattering layer. It can be 

expressed as follows, 

/.(/)=< \FFT{y(t)}\2 >, Tx<t<T2 (6.2) 

where y(t) are the scattered returns, FFT{-} stands for the Fourier transform, | • | 

stands for modulus, < • > stands for ensemble average over different pings, and T\ 

and T2 are the travel times corresponding to arrivals from the top and the bottom of a 

scattering layer. Note that y(t) along with Ti and T2 are different for each scattering 

angle. The backscattering strength versus grazing angle for each frequency can then 

be evaluated according to Eq.5.1. The two irregular scattering layers are treated sep- 

arately. When computing the incident field on the lower irregular layer, the effect of 

the upper irregular layer on the transmitted field beneath it is neglected. Actually it is 

consistent with the Born approximation employed in our scattering model since scat- 

tering from volume inhomogeneities is supposed to be weak. In Tang's thesis [35], 

simulations had demonstrated that the transmitted field beneath a six-wavelength 

thick random layer calculated by the Born approximation was accurate enough. Co- 

incidentally, the upper irregular layer in the ARSRP experiment has a thickness of 

about six wavelengths. Therefore, the neglect of the influence on the incident field 

of the lower irregular layer due to the existence of the upper irregular layer can be 

justified. Taking into consideration the attenuation in the sediment, an amount of 

2aRi will be added to the above backscattering strength, where a is the attenuation 

coefficient and Ri is the ray-path length in the sediment. 

Figures 6-10 and 6-11 show the estimated backscattering strength versus grazing 

angle and frequency for the two irregular scattering layers at the east side of the 

sediment pond. Note that the grazing angle here and from now is the angle measured 

at the water/sediment interface instead of at the top of the irregular region.  How- 
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Figure 6-10: The estimated backscattering strength for the upper irregular region at 
the east side of the sediment pond. 
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Figure 6-11: The estimated backscattering strength for the lower irregular region at 
the east side of the sediment pond. 
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ever, due to the fact that the sound speed gradient is small, the largest difference, 

appearing at 30 degrees, is 1.4 degrees for the upper layer and 3.4 degrees for the 

lower layer, values which are smaller than the beamwidth.  Therefore, the angular 

dependence obtained can be considered as reliable.  It can be seen that in general 

the backscattering strength would decay with the increase of the frequency and/or 

the decrease of the scattering grazing angle. The widely used Lambert's law will cer- 

tainly fail to produce the frequency dependence of the backscattering strength. With 

a point scatter model, the predicted backscattering strength would be independent 

of scattering angle, which is also not the case here.   In Fig.  6-11, there is a peak 

standing out at low frequencies and high grazing angles. The peak is only confined to 

grazing angles larger than 50 degrees and frequencies less than 350Hz, which makes 

it look more like an artifact. One possible cause of it could be as follows: Although 

the aforementioned subtraction procedure had eliminated some strong normal and 

near normal incidence reflections, it can hardly be perfect in a real environment. As 

a result, there will be some residue or even some error brought in.   Certainly the 

tilting of the layers beneath the lower irregular layer, as can be seen in Fig.   1-1, 

makes matters worse.   The subtraction process would face greater difficulties here. 

Meanwhile, the beamwidth of the mainlobe is larger for a lower frequency and when 

the look direction is closer to normal incidence, which increases the chance of picking 

up those residues in the normal and near normal incidence directions. Incidentally, 

the returns from the above tilting layers would have about the same arrival time as 

the scattered returns from the lower irregular layers at about a 60 degree grazing 

angle. In addition, ambient noise is found to peak between 250Hz and SOOHz, which 

may influence the scattering strength estimation because of weak oblique backscat- 

tering. Therefore, in the model/data comparisons, we will concentrate more on the 

backscattering strength at frequencies larger than 300Hz. 

Notice that the estimation of the backscattering strength from data is related to 

the background bottom model, especially the attenuation coefficient. Because the 

scattered returns from the two irregular layers are identified by their travel times, 
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Figure 6-12: The sensitivity of the estimated backscattering strength to the attenua- 
tion coefficient at 450Hz for the upper irregular layer at the east side of the sediment 
pond. 

errors in the sound speed profile would have little impact on the backscattering es- 

timation. However, the attenuation coefficient would decide the compensation level 

(cf. pl55) of the backscattering strength at different scattering angles, therefore in- 

fluencing the angular dependence of the backscattering strength as well as the level. 

In this study, we obtain the best estimate of the attenuation coefficient from the 

normal incidence returns as O.ldB/X. According to the archival data compiled by 

Kibblewhite [59], the attenuation coefficient for silt and clay sediment is between 

0.01dB/X to 0.12dB/X. The example shown in Fig. 6-12 illustrates the sensitivity of 

the estimated backscattering strength at 450Hz to the attenuation coefficient. 
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6.4    Model and Data Comparison 

By no means it is an easy task computationally to generate scattering time series, es- 

pecially the wide 400Hz bandwidth in the ARSRP experiment. Adding to the degree 

of difficulty are the thick scattering layer and fine sampling requirement. In order 

to perform beamforming, scattered returns have to be simulated across the whole 

receiving array. Therefore, instead of a scattering time series, we choose to compare 

the backscattering strength versus grazing angle estimated from model simulation 

and real data for a selected set of frequencies over the signal spectrum. 

The fact that multiple constraints beamforming is carried out in the frequency 

domain provides us with extra benefit. In other words, if the scattered field at each 

hydrophone for a single frequency is available, we are still able to perform beam- 

forming to obtain the scattered field and therefore the scattered intensity at different 

scattering angles. As a result, in order to compare with data, all we need to do in 

the modeling part is to simulate the scattered field at each receiver for the selected 

set of frequencies. The beamforming is the same as that in the data processing. So 

is the estimation of the backscattering strength after obtaining the backscattering 

intensity for each frequency. Meanwhile, the procedures of simulating the scattering 

time series have been given in Chapter 5. We simply forego the last step, the Fourier 

synthesis, since our goal here is to obtain the scattered field at certain frequencies. 

Model/data comparisons will be carried out for the two irregular layers at the east 

side of the sediment pond only. We choose to compare at six frequencies: 300Hz, 

350Hz, 400Hz, 450Hz, 500Hz, and 550#z. As for the power spectrum and char- 

acteristic length scale to describe the inhomogeneous sound speed and density fluc- 

tuations, we elect to test the Gaussian distribution and the power law distribution 

(the exponential distribution is a special case of a power law distribution). There is 

no evidence suggesting horizontal anisotropy in the ARSRP Site A sediment pond 

area.  So we will simply let the horizontal correlation length lx = ly in the model. 
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Meanwhile, there is no measurement of the correlation length in this sediment area. 

By examining Fig. 1-1, one would have the impression that the random field is much 

better correlated horizontally than vertically. As a matter of fact, this is consistent 

with the geoacoustical model proposed by Lysanov [29], in which he suggested large- 

scale in the horizontal plane and small-scale in depth for random inhomogeneities in 

the sediment, the so-called "pancake" model. The above sediment profiling covered 

a horizontal distance of about 330m. The rough estimation would show us that the 

horizontal correlation length be on the order of 10m. Of course, the estimation can 

be very wrong. However, it is just the starting point of our parameter search. In the 

meantime, the standard deviation a of the sound speed fluctuation can range from 

1.5% to 8% and ß, the ratio between density and sound speed fluctuations, between 

1 to 10 according to Yamamoto [64]. Also in Yamamoto's estimation, both sound 

speed and density fluctuations were characterized by a power law distribution with v 

(cf. Eq.3.35) between 0.4 and 0.65. 

As shown in Fig. 6-13, the best fit for the upper irregular layer is with a power law 

distribution. The parameters for the model are correlation lengths lx = ly = 20m, 

lz = 0.7m, the standard deviation of sound speed fluctuations a = 2.8%, ß = 3, 

and v = 0.5. The model predicted curves are ensemble averages of 200 realizations, 

therefore the standard deviations are very small, (see Appendix B for the estima- 

tion of the standard deviation from the simulation and data.) In general, the model 

curves agree with the data very well. Notice that in the data curves, around a 47 

degree grazing angle for all the selected frequencies except 500Hz, there is a small 

bump. No specific cause has been found for this and the model cannot predict it 

either. As for the parallel shift between the model and data curves at 300Hz, it 

might be due to the aforementioned strong ambient noise. Figure 6-14 shows the 

model/data comparison for the lower irregular layer at the east side of the sediment 

pond. The best fit again belongs to random sound speed fluctuations with a power 

law type of power spectrum. The horizontal correlation lengths are lx = ly = 20m, 

the vertical correlation length is 0.8m, the standard deviation a = 2%, ß = 3, and 

161 



f=300Hz f=350Hz 

-40 

-50 

m 
•D 
£-20 

1-30 
w 

■1-40 
*-» 
g-50 
CO 

Ü <o 
m 

-20 

-30 

-40 

-50 

föoOHz 50 60 

f3>> 

 / ' ~ ':^__-X^ 

t-jT\-"r 

30 
fi^OOHz 50 60 

=*rf*f 

30 40 50 60 
Grazing angle(degrees) 

-20 

-30 

-40 

-50 r 

30 
fSsOHz   50 

-20 

-30 

-40 

-50 

-20 

-30 

-40 

-50 

&&*r**f*i 

30 
ÄOHZ   50 

frrfrf 

30 40 50 
Grazing angle(degrees) 

60 

60 

60 

Figure 6-13: Model/data comparison for the upper irregular layer at the east side of 
the sediment pond. Sound speed fluctuations are described by a power law distribu- 
tion with lx = ly = 20m, lz = 0.7m, a = 2.8%, ß = 3, and v = 0.5. The error bars 
show the standard deviation of the simulated backscattering strength. 
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Figure 6-14: Model/data comparison for the lower irregular layer at the east side of the 
sediment pond. Sound speed fluctuations are described by a power law distribution 
with lxz=ly = 20m, lz = 0.8m, o = 2%, ß = 3, and u = 0.5. The error bars show the 
standard deviation of the simulated backscattering strength. 
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v = 0.5. 200 realizations are used to obtain the ensemble average. The matches are 

again satisfactory, although the error in sound speed profile and attenuation estima- 

tion would have more impact here than on the comparison of the upper irregular layer. 

The effects of error in the background bottom model upon the backscattering 

strength predicted by the model is minimal because the propagation effects associated 

with the background bottom model is cancelled out in estimating the backscattering 

strength. 

For the Gaussian distribution, an acceptable fit for the upper irregular layer is 

obtained with lx = ly = lm , lz = 0.2m, a = 1%, and ß = 2. To us, these parameters 

are less reasonable. The agreements are not as good as with a power law distribution, 

either. In addition, the fit is far less satisfactory for the lower layer. All of these 

factors make the idea of using a Gaussian distribution to describe sound speed and 

density fluctuations unfavorable to us in the ARSRP backscattering scenario. 

As discussed in Chapter 3, for backscattering from random inhomogeneities, the 

angular dependence of the backscattering strength is mainly determined by the roll- 

off rate of its power spectrum versus wavenumber. This is because the roll-off rate 

is directly related to the level of small-scale roughness at high wavenumbers. For a 

power law distribution, the quantity v will control the roll-off rate (2(u + 3/2) for 

a 3-D case) and therefore the angular dependence. Different correlation lengths will 

only alter the power spectrum level at a particular wavenumber but not the roll-off 

rate. The aspect ratio, defined by the horizontal correlation length over the vertical 

correlation length, would play a role as well, although not as significant as v, which 

is shown in Fig. 6-15. Figure 6-16 shows the results of the parameter study. The 

two curves have the same u, a, ß, same aspect ratio but different correlation lengths. 

It can be seen that the trends of the two curves are very similar but not exactly the 

same. The differences can be seen at 450Hz and 550Hz, for example. Although we 

find the dash line the best fit with data, it is a close call since the differences are small 
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Figure 6-15: Parameter studies for sound speed and density fluctuations described by 
a power law type of power spectrum: the effect of the aspect ratio. 
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Figure 6-16: Parameter studies for sound speed and density fluctuations described 
by a power law type of power spectrum: same aspect ratio but different correlation 
lengths, v = 0.5. 
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. This insensitivity would make it difficult to invert for sediment properties such as 

correlation lengths from the angular dependence of the backscattering strength. On 

the other hand, it reveals the importance of estimating v if random inhomogeneities 

are described by a power law distribution. In the meantime, it would benefit the task 

of predicting the directivity of the backscattered field without full knowledge of the 

ground truth. 

In summary, the model is able to match the ARSRP backscattering data well with 

a power law type of power spectrum description of random sound speed and density 

fluctuations. Yet, model/data comparisons for more data sets are needed before any 

conclusion reached in this section can be generalized. Nevertheless, the successful 

model/data comparison does show the merit of our volume backscattering model. 
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Chapter 7 

Conclusions and Future Work 

In this thesis an attempt has been made to model monostatic backscattering from 

3-D volume inhomogeneities in the sediment and to compare the results of the model 

with ARSRP backscattering data. While the work presented here is helpful in under- 

standing the underlying physics and predicting the scattering phenomena, more work 

remains to be carried out in order to achieve one of our ultimate goals, solving the 

inverse problem. In this chapter, we will try to draw some general conclusions from 

the work being done and come up with some suggestions for future research. 

7.1    Conclusions 

The results of the thesis can be summarized as follows: 

• A scattering process cannot be modeled correctly without properly accounting 

for the incident field. The scattered field and the incident field are interre- 

lated and actually it is the total field, i.e., the combination of the two, that 

controls the reradiation of acoustic energy in an inhomogeneous medium. In 

some scenarios, the scattered field is much weaker than the incident field, and 

therefore the total field can be approximated by the incident field (i.e., the 

Born approximation). In any case, an accurate evaluation of the incident field 

is essential in modeling the scattering process. As revealed in Chapter 2, several 

approximate propagation models used in volume scattering studies sometimes 
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have their drawbacks in dealing with scattering from a bottom with complicated 

sound speed structure where multi-path effects are significant. As a matter of 

fact, not only do we need to examine the accuracy of these approximation meth- 

ods in different scenarios, but also it is often necessary to evaluate the incident 

field exactly by either an analytical solution or a numerical method such as 

wavenumber integration. The above results are obtained through simulations 

in a deep-water environment. In shallow water, we would expect the propa- 

gation of sound waves become more intricate because of the waveguide effect 

[7], which would further the requirement of a good propagation model so as to 

calculate the incident field accurately in scattering modeling. 

With OASES chosen as the propagation model in this work, we are provided 

with the ability to model volume scattering from a bottom with complicated 

sound speed structures such as sound speed gradient, multi-layering, and even 

an elastic basement as long as the scatterers are located in a fluid layer. 

The concept of applying the equivalent surface backscattering strength in char- 

acterizing volume scattering processes is still valid in some high-frequency and 

high-attenuation bottom scattering studies. However, precautions need to be 

taken when multi-path contributions to the field are evident, which would 

put the obtained angular dependence of the equivalent surface backscattering 

strength in question. 

The volume scattering model described in Chapter 3 provides a tool to model 

scattering contributions from both sound speed and density fluctuations in a 

volume. Simulations in Chapter 5 have confirmed the fact that density varia- 

tions are dominant in backscattering. Meanwhile, the analytic solutions in a 

free-space scenario show clearly that the nature of the scattered field depends 

strongly on the statistical distribution of the random sound speed/density vari- 

ations. Both the characteristic length scale and the power spectrum descrip- 

tions of the random inhomogeneities have great impact on the directionality 

of the scattered field.   Although the monostatic configuration cannot resolve 
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the anisotropic nature of the scattered field in horizontal planes, the angular 

dependence would behave very differently because of that. Effects due to the 

vertical correlation of the random scatterers are evident in the numerical ex- 

periments. To model the scattering volume as vertically uncorrelated stacks of 

layers would bear the risk of losing important contributions due to the vertical 

correlation. All the above helps us to reach the conclusion that it is critical 

to obtain ground truth for the sound speed/density variations in the sediment 

volume. The effort of achieving better understanding and parameterizing the 

variations of the sediment properties should be an integrated part of volume 

scattering studies. 

> Simulating scattering from full 3-D volumetric inhomogeneities is still very com- 

putionally expensive. In Chapter 4, the monostatic backscattering configuration 

has been taken advantage of so that the azimuthally-summed 3-D random field 

can be generated with much relaxed computational requirements. It enables us 

to get a grip on the full scope of monostatic volume backscattering in a real 

environment. 

In the model and ARSRP backscattering data comparison, a power law distri- 

bution of random sound speed/density variations is found to fit the data very 

well. Parameter wise, on the one hand, the horizontal correlation length is much 

larger than the vertical correlation length, which is consistent with some of the 

geophysical models of the sediment (so-called "pancake" models). On the other 

hand, the change of horizontal correlation length in a power law distribution 

does not have strong effect on the slope of the backscattering strength versus 

grazing angle but only the level. Rather the slope is determined by the decaying 

rate of the corresponding power spectrum versus wavenumber, i.e., the fractal 

dimension, which is directly related to the sound speed/density fluctuations in 

small scales. This would benefit people who want to predict scattering phenom- 

ena but only with limited knowledge of the sediment properties. However, this 

insensitivity presents a challenge for people who attempt to do inversion. All in 
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all, this first-order volume scattering model has been proved capable of match- 

ing the experimental data and the power law distribution is found to describe 

the sound speed and density fluctuations in the sediment satisfactorily. 

7.2    Future Work 

There are a number of ways to improve or extend the proposed model in this thesis. 

• A logical next step would be to take advantage of the ability rendered by OASES 

to include rough surface scattering in the picture. The water/sediment interface 

scattering was insignificant in the ARSRP backscattering experiment. However, 

a more general scenario would inevitably involve both rough surface scattering 

and volume scattering. It would be interesting to see the combined effect and 

to compare that with surface scattering or volume scattering only. 

• The volume scattering model that we have here is essentially a single scattering 

model, which would certainly be inaccurate when multiple scattering is of con- 

cern. The development of a multiple scattering model will improve our modeling 

ability and further our understanding of the scattering mechanisms. 

• A very useful extension of this work would be to model bistatic scattering 

instead of only monostatic backscattering, although we may not be able to 

enjoy the benefit of a simplified 3-D random field generation. 

• The work present above models volume scattering in fluid media only and cannot 

account for scattering from an elastic bottom. The model would be more useful 

if it could describe volume scattering in elastic media, which has attracted more 

attention recently. 

• If an experiment similar to the ARSRP experiment were to be performed in 

the future, more effort in gathering ground-truth information is highly recom- 

mended, especially the attenuation coefficient. 
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Appendix A 

The Variance and Power Spectral 

Density of the 2-D 

Azimuthally-Summed Random 

Field with Gaussian Correlation 

Function 

As mentioned in Chapter 4, the 2-D Gaussian correlation function in Cartesian coor- 

dinates is 

Cfe,^)=^2exp(-i[| + |]), (A.1) 
x y 

where o is the standard deviation, and lx and ly are the correlation lengths in the x 

and y directions, respectively. The corresponding power spectral density is 

W(kx,ky) = 27rUyexp(-  *«^Vy)- (A 2) 
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For an isotropic random field, we have lx = ly = I. After the coordinate transfer- 

mation 

1 x = rcoscj) 

1  y = rsin<j) 
(A.3) 

the correlation function of e becomes 

y-2     1     „2     

< c(ri,0i)e*(r2,02) >= exp(—l- 2— ̂ r^'-02»),              (A.4) 

where (*) stands for the conjugate operation. Since 

r2ir 

r](r) = /     e(r, <f>)d<f>, 
Jo 

the correlation function of rj becomes 

/•Z7T      rZTT 

*7(ri)r/*(r2) >   =    /     /     < e(ru</>i)e*(r2,<h) > dfadfo 
Jo    Jo 

2      /   rf + rj    [2*[2*       riT2Cos(0i-^2) 
=   ° exp(—^-)Jo  JQ exP( )^# 

2 2r /rir2s ,   r? + r|. 
=   47rVJ„(^)exp(-^). (A.5) 

If ri = r2 = r, the variance at range r is 

< V(r)v*(r) >= 4*rVl0(£) exp(-£). (A.6) 

For an anisotropic random field, the correlation function of r](r) is 

° k k exp(~ i n + m J)#1#2-   (A-7) 
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The variance as a function of r in this case becomes 

Var{r](r)} = 
r2n r2ir »-2 

°2 h h ^P^^^K^0^2-005^)2"^^^«^-«^!)2])^!^.    (A.8) 
x y 

The power spectral density Ws is as follows 

Ws(kr)   =   27Tlxlyj    exp(—^ —-» L)d$ 

.   k2
r(l2

x + l2y)r2« k2
r{l2x-l2)cos29x 

=   2irlxlyexp{—rV*     yJ) /     exp(—rV*    /' )d0 
4 Jo 4 

=   47r24^exP(-^%tS))/o(M^S)). (A.9) 
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Appendix B 

Estimation of the Standard 

Deviation 

The standard deviation is widely used to describe the dispersion of a random distribu- 

tion. It is known to work best for a Gaussian distribution. However, the values of the 

standard deviation is greatly affected by outliers for some non-Gaussian distributions 

and therefore may be a poor measure of dispersion in those cases. The formula to 

estimate the standard deviation from random realizations is 

1 N 

STD{y} = ^j^—[Y,(yi-y)\ (B.l) 

where N represents the number of realizations and y the mean of y. 

For the simulated backscattering coefficients from the model in Chapter 6 (a power 

law distribution), the distribution is not Gaussian but more like an exponential dis- 

tribution (or a Chi-square distribution with 2 degrees of freedom), which can be seen 

in Fig. B-l. It is clear that in this case the standard deviation no longer qualifies as 

a quantitative measurement of the dispersion. 

The backscattering coefficient estimated from the data is the mean of eight pings 

(eight independent realizations). If the mean value is treated as a new random vari- 
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Figure B-l: Histogram of the simulated backscattering coefficients at 6 = 42 degrees 
and / = 500Hz (200 realizations). 
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Figure B-2: Histogram of the simulated backscattering coefficients averaged over 8 
realizations at 8 = 42 degrees and / = 500Hz (200 realizations). 

able, we will arrive at a different random distribution. Assuming that the backscat- 

tering coefficient before averaging possesses an exponential distribution, the new ran- 

dom variable will have a Chi-square distribution with 16 degrees of freedom. In other 

words, it is closer to a Gaussian distribution than the original exponential distribu- 

tion(it will be exactly a Gaussian distribution if the average is performed over an 

infinite number of independent realizations according to the Central Limit Theorem). 

This can be confirmed by the histogram of the simulated backscattering coefficient 

averaged over eight realizations as shown in Fig. B-2. As a result, the standard 

deviation estimated from the above equation would be a much better measurement 

of the dispersion, which is shown as the error bars in Fig. 6-13 and Fig. 6-14. 

While for the data, only 8 pings are available.  Therefore, the above procedure 

done to 200 realization of simulated backscattering coefficient cannot be performed, 
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Figure B-3: The estimated backscattering strength with standard deviations (error 
bars) over all the frequencies for the (a) upper and (b) lower irregular layers at the 
east side of the sediment pond. 

which is the reason why error bars are not plotted in Figs. 6-13 and 6-14 to rep- 

resent the standard deviation estimated from the data. However, the average over 

independent frequencies in each ping should provide results which are similar to those 

obtained by averaging over pings. By using this approach, we can obtain reasonably 

good estimates of the standard deviation of the backscattering strength from the data, 

which are shown in Fig. B-3. 
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